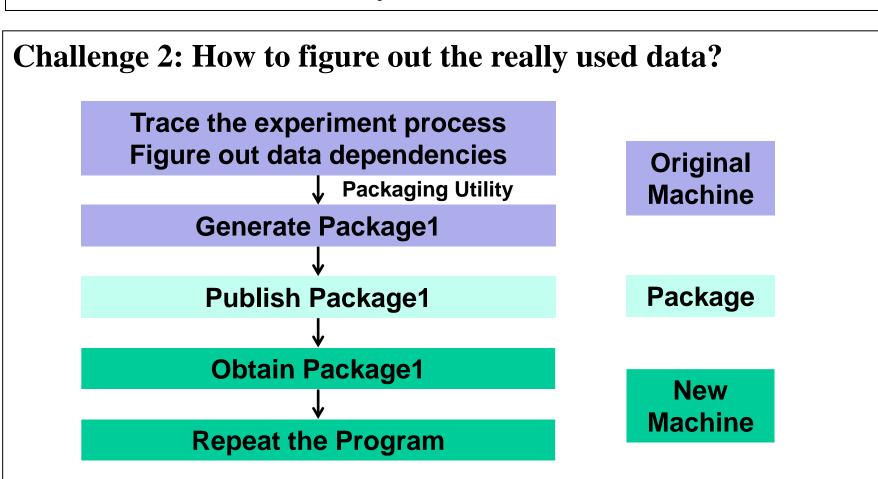

A Case Study in Preserving a High Energy Physics Application

Haiyan Meng, Matthias Wolf, Peter Ivie, Anna Woodard, Michael Hildreth, and Douglas Thain Department of Computer Science and Engineering / Department of Physics

UNIVERSITY OF NOTRE DAME

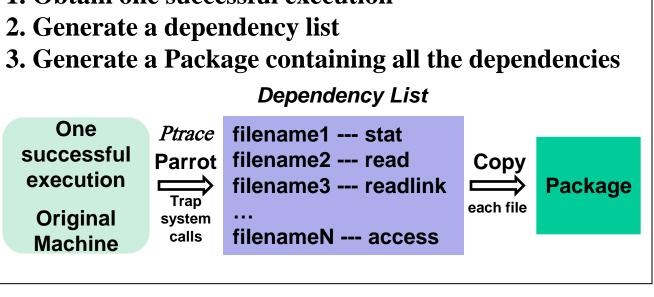
ABSTRACT

The reproducibility of scientific results increasingly depends upon the preservation of computational artifacts. Although preserving a computation to be used later sounds easy, it is surprisingly difficult due to the complexity of existing software and systems. Implicit dependencies, networked resources, and shifting compatibility all conspire to break applications that appear to work well. To investigate these issues, we present a case study of a complex high energy physics application. We analyze the application and attempt several methods at extracting its dependencies for the purposes of preservation. We propose one fine-grained dependency management toolkit to preserve the application and demonstrate its correctness in two different environments - one virtual machine from the Notre Dame Cloud Platform and one virtual machine from the Amazon EC2 Platform. We report on the completeness, performance, and efficiency of each technique, and offer some guidance for future work in application preservation.



Observations Many Explicit External Dependencies Many Implicit Local Dependencies Configuration Complexity High Selectivity Rapid Changes in Dependencies

High Selectivity of Data and Software Dependencies


Name	Location	Total Size	Named Size	Used Size
CMSSW code	CVS	88.1 GB	448. 3 MB	6.3 MB
Tau source	Git	73.7 MB	73.7 MB	6.7 MB
PyYAML binaries	HTTP	52 MB	52 MB	0 KB
.h file	HTTP	41 KB	41 KB	0 KB
Ntuples data	HDFS	11.6 TB	N/A	20 GB
Configuration	CVMFS	7.4 GB	N/A	103 MB
Linux commands	localFS	110 GB	N/A	68.4 MB
Home dir	AFS	12 GB	N/A	32 MB
Misc commands	PanFS	155 TB	N/A	1.6 MB
Total		166.8 TB	N/A	21 GB

Challenge 1: How to redirect data source of each dependency? GIT=/data/git/cms-ttH GIT=http://github.com git clone http://github.com /cms-ttH /cms-ttH/... script' script' git clone \$GIT/... git clone \$GIT/... **Abstract Script** Script **Package Email** GIT' + CVMFS': data copied into the package original data GIT + CVMFS **Evolution of Preservation Methods**

One Implementation of Package Method

- 1. Obtain one successful execution

Evaluation	Task Category	Original :	Script	Reduced Pag	ckage
. Execution time	Obtain Namelist		N/A	28min	28s
time	Generate Package		N/A	26min	19s
	Obtain Software	8min	11s		N/A
	Build Environment	5min	4 9s		4s
	Analyze Code	20min	31s	13min	04s

2. Correctness

Machine Type	Distribution Version	CPU Cores	Memory (GB)	Execution Time	
Original Machine	Red Hat 5.10	64	125	13min 04s	
KVM (Notre Dame)	CentOS 5.10	4	2	21min 38s	
Xen (EC2)	Red Hat 5.9	16	60.5	13min 30s	

Open Problems

Measure the Mess or Force Cleanliness? Granularity of Dependencies Scope of Reuse Dependency Detection

This work was supported in part by National Science Foundation grants PHY-1247316 (DASPOS), OCI-1148330 (SI2) and PHY-1312842.