IR 3/15/2017 R. B. Palmer

- Layout
- Parameters
- Downstream electrons
- Downstream protons
- Acceptances
- Errors
- Conclusions

Not yet matched into hadron and electron rings

Parameters

For given emittances Luminosity

$$Lumin \propto \frac{1}{\sigma_x \sigma_y} \propto \frac{1}{\sqrt{\beta_x \beta_y}} \propto \frac{1}{x' y'}$$

Using the same magnets, different settings can determine these divergences x', y' and thus the luminosity:

	cooling	x'_p	y_p'	Lum
		μ rad	μ rad	10^{33}
HA	No	56	380	1.16
HL	No	131	382	2.9
FULL	yes	127	341	12.4

Parameters

cooling		no	no	yes
		High Accpt	High Lum	Full
Luminosity	$10^{33} cm^{-2} s^{-1}$	1.2	2.9	11.4
bunches n_b		330	330	1320
Divergence _p	μ rad	56	131	131
E_p	GeV	275	275	275
N_p	10^{10}	10.6	11.1	5.6
σ_{zp}	cm	8	7	3.5
E_{e}	GeV	10.1	10.1	10.1
N_e	10^{10}	30.5	30.5	15.1
σ_{ze}	cm	0.8	0.8	0.8
$emit_{Np} x$	μ m	4.7	4.7	2.4
$emit_{Np}$ y	μ m	1.8	1.8	0.9
$beta_p \mathbf{x}$	cm	556	94	47.2
$beta_p$ y	cm	3.9	4.2	2.1
$emit_e x$	nm	23.1	24.2	24.2
$emit_e$ y	nm	3.68	3.47	1.73
$beta_e x$	cm	397	62.5	15.6
beta $_e$ y	cm	6.5	7.4	3.7

Luminosities

High Accept (HA); High Lumi (HL); With cool (FULL)

Downstream electrons

Electrons Detectors

- Luminosity monitor facing IR
 - $-\operatorname{Foil}$ converts $\gamma {\rm s}$ to e pairs
 - -vertical bending magnet
 - -electron detectors
- electron tag after weak horizontal bend (B1)
 electron detector

High Accept

High Accept

Magnets

- Maximum Aperture times gradient: 4 T
- Maximum Dipole field: 4.4 T
- Main challenge is shielding of early hadron magnets at electron beam
 Needed over a wide range of operating fields
- Probably needs active shielding in more than one case

Active mag shielding

To cancel hadron magnet stray fields at electron beam

Actively shielded quadrupole Tested prototype of such a magnet built for the ILC

Required size and field higher, but concept the same

DVCS Physics

Hadron Detectors

		from	to
	Central Detector	20 mrad	π - 20 mrad
	Forward Spectrometer	pprox 1.5 mrad	20 mrad
	Roman pots before Crab Cavities	pprox 1 mrad	pprox 5 mrad
IV	Roman pots after Crab Cavities	0	pprox 1 mrad
	Neutron detector	0	4 mrad

Forward Spectrometer

Covers angles 5 to 20 mrad e.g. for forward p in lower energy DVCS (see above)

Warm iron and detectors super-conducting coil Direct wind cancelling dipole over electron beam

Azimuthal Acceptance

Azimuthal acceptances for regions II, III, and IV for the High Luminosity case.

HL Acceptances

Simple Calculation

GEANT Simulation

Efficiency with cut at $dp/p = 10 \times 6.5 \ 10^{-4}$

afficiency %

Qualitative agreement

17

Efficiency \times Luminosity:

	< 400 MeV/c	> 400 MeV/c	ratio
HL	20	200	1:10
HA	55	50	1:1
50/50	37	125	1:3.4

Not obviously so bad, because cross sections are much higher at low pt. But some fracions of both probably best. We have the tools to study this

Measurement Errors

- Crab deflection effect R1-R2 pt determination but timing to \approx 50 ps would resolve it
- Forward Spectrometer instrumentation Very high resolution tracking needed
- Large divergences needed for high luminosity but gives large errors on hadron pt needs luminosity vs. divergence optimization
- Dynamic fitting using pt conservation could help and needs study

Covered Topics?

IR Layout Magnetic Shielding Parameters without Cooling Parameters with Cooling Detector definitions HE GEANT DVCS Simulations Consideration of Errors Preliminary OK Concepts OK Preliminary OK Less studied, but OK Preliminary OK Tools OK Starting

To Be Done?

- Matching IR into rings
- Refine layout of outgoing e detectors
- IR magnet designs with possible R&D
- Iterate operating parameters with/without cooling
- Adding one or more Low Divergence (LD) cases
- Iterate detector designs
- Study DVCS at lower energies
- Study e-He3 e-D e-Au parameters