

B0 Magnet Options

Holger Witte Brookhaven National Laboratory Energy Frontier Accelerator Group

Overview

- Preliminary designs for three options
 - Septum design
 - Halbach shielding
 - Superconducting compensation coil
- No option is perfect
- Tradeoffs
 - Performance: Fixed field, field quality
 - Cost
 - Size/weight

Septum Design

- Current sheet
- Passive shielding
 for electrons
- Pros
 - Good field quality for hadrons
 - Shielding passive
 - Cheap
- Cons
 - 'blind' beyond septum
 - Large
 - heavy

Magnetization

2D Field Shielded Region

3D Field Shielded Region (Comparison)

B0 Spectrometer Halbach Solution

- Compensation field provided by Halbach magnet
 - Needs to be at 77K for best performance
 - Passive shield for residual field
- Pros
 - Can be smaller than SC solution
 - Compensation field does not perturb field for protons
 - Additional space for detectors
 - Less expensive than SC solution
 - Smaller/lighter than septum design
- Cons
 - Fixed field

Geometry

Front

Rear

Hadrons: 1.4T Electrons: 0T

Note: Coils will change

Halbach Field

Field Quality Hadrons

Active Compensation Coil

- Active shielding coil (NbTi) for electrons
 - Tapered?
 - Passive shielding on inside to take care of residual field
- Pros
 - Variable field?
 - Additional room for detectors
 - Size and weight down
- Cons
 - Field quality protons
 - Add. complexity of SC magnet
 - cost

Implementation: Helical Coil

- One example how this can be done
- Helical coils: cosine theta magnet
- Need at least two layers
 In practise: four
- Better performance than conventional coils
 - Field quality
 - maximum field
- Flexibility: Superposition of two currents
 - Any multipole (or combination of)

B0 Compensation Dipole

B0 Compensation Dipole

Compensation Field

Load Line

B0 3D Model

Crosstalk – Residual Field Electrons

Iterative Improvement

Expected Residual Field at 0.75T

NATIONAL

-0.5

z X x

Yoke Magnetization

00.5

2.5 m

Surface: Magnetic flux density norm (T)

0

0.75T

m

0.5

Surface: Magnetic flux density norm (T)

2.5

6 2

4

0.

.

1.5T

Field Hadrons Centre Plane

25 August 2017

Summary

BROOKHAVEN NATIONAL LABORATORY

	Septum	Compensation coil	Halbach
Shielding e-	++	++	++
Field quality hadrons	+		++
Detector space		+	++
Variable field	++	O ¹⁾	_2)
Size/weight		+	+
Cost	++		0
Risk	++	?	+ ³⁾
Cryogenics	RT	4.2K	77K

- 1) Affects field quality and residual field e-
- 2) Requires separate Halbach magnets / more complicated design
- 3) Risk is demagnetization can be tested inexpensively

Conclusion

- Three options for B0
- Septum Design: low risk
 - Variable field
 - Limited space for detectors
 - Large and heavy
- Halbach design: more space for detectors
 - Limited risk
 - Fixed field (live with one field, swap magnets, ...)
- Superconducting compensation: variable field
 - More complex design
 - Less space
 - Crosstalk / field quality issues: tolerable?
 - Some practical issues

Radius Halbach Magnet

