Dynamic Aperture for eRHIC

2018 April 6, eRHIC IR meeting

IR Nonlinearity & DA

- According to RHIC operational experiences, dynamic aperture is mainly reduced by lattice nonlinearity, IR field errors, and beam-beam.
- Without BB, DA is about 10 sigmas without IR nonlinearity. It drops to about 6 sigmas with IR nonlinarity.
- Without IR nonlinearity, DA is about 10 sigmas without BB. It drops to about 6 sigmas with BB.
- With IR nonlinearity and BB, DA is about 5 sigmas.

IR Nonlinearity Sources

- High order (> quadrupole) field components in interaction regions are our concern since beta functions are very large there.
- For dipole: mainly sextupole (b2 component)
- For quadruple: mainly 12-pole (b5 component)
- For RHIC DA calculation, we installed multipole field errors up to 22-poles.
- DA calculation shows it is hard to say which component is dominant.

eRHIC IR Nonlinearity

- IR region: +/- 160 m from IP
- Information needed for DA:
 - $\rightarrow\,$ all field errors up to 22-poles are needed, including systematic and random errors
 - $\rightarrow\,$ stray field from other ring magnets or common magnets

Very Preliminary DA for eRHIC

Figure 1: Calculated 10^6 turn dynamic aperture with beam-beam interaction and IR nonlinearities.

DA calculation and Filed Limit

- DA calculation can be used to check the effect of IR magnets.
- DA calculation also can be used to set the limit of IR nonlinear components.
- IR nonlinear correction:
 - \rightarrow spool pieces in magnets (b2 \rightarrow b5, a2->a5)
 - \rightarrow stand-alone low order correctors
 - \rightarrow beam-based correction.