1911-IR-Changes.pdf

R.B.Palmer 1/11/2019 This document compares the parameters in file 1811-IR-v3.pdf entitled "Parameters" dated 12/3/2018 and emailed 12/14/2018, with those in

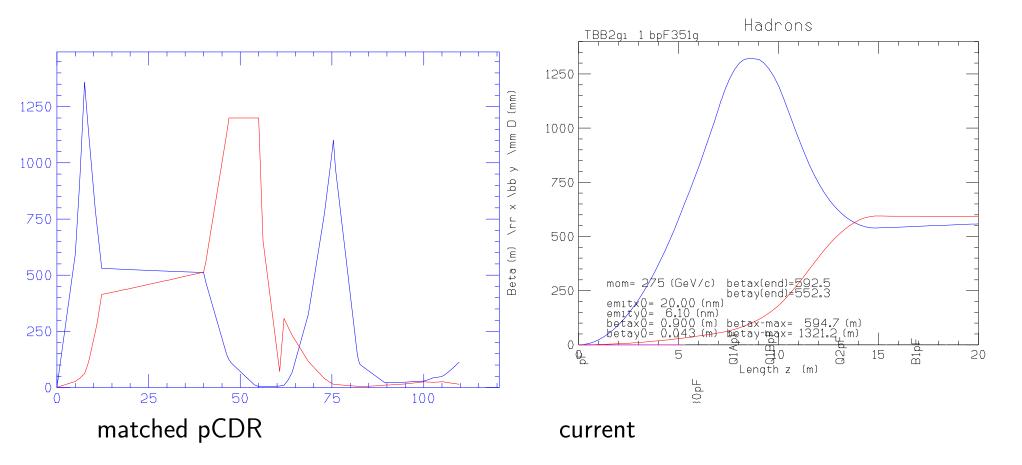
file 1809-IR-update-v7.pdf entitled "IR Update (v7)" dated 9/21/2018 and emailed on that date.

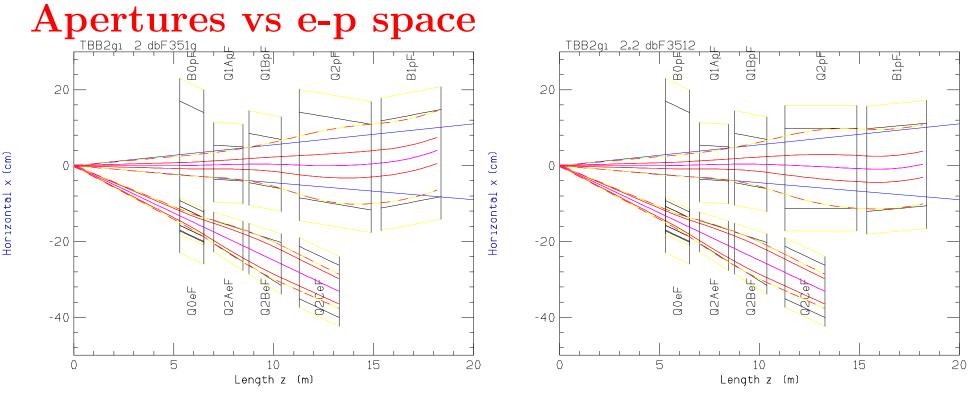
Both represent designs made after the pCDR that greatly reduced the required gradients by keeping e and hadron magnets side by side instead of alternating them.

The changes mainly reflected an improved match of betas around 30 m from the IP with those in the pCDR matched solution.

This is merely an attempt to guess what they may be when an actual match is performed.

In the forward proton case it also included new magnet tilts to maximize the space between e and p beams.

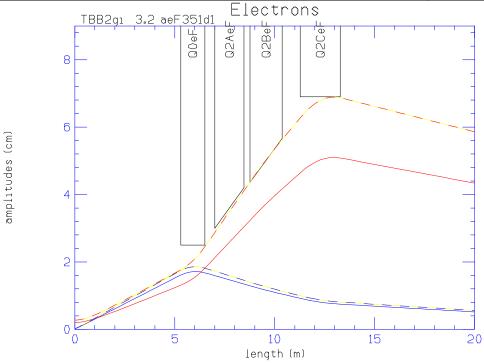

Forward Protons


In the forward proton case the amin changes came from new magnet tilts to maximize the space between e and p beams.

			9/21						12/14				
	Lc	L	ар	th	grad		Lc	L	ар	th	grad	dap	dgrad
	m	m	m	mrad	T/m		m	m	m	mrad	T/m	%	%
B0pF	5.9	1.2	.17	-25*	0	=	=	=	=	-25	=	0	0
Q1ApF	7.73	1.46	0.045	-10	-77.903	=	=	=	=	-3.15	=	0	0
Q1BpF	9.65	1.61	0.065	-10	-63.028	=	=	=	=	-10	=	0	0
Q2pF1	13.07	3.6	0.108	-13	39.736	=	=	=	0.113	-8.89	=	+5	0
B1pF	16.87	3.0	0.125	0	0	=	=	=	0.115	10	=	-8	0

* incorrectly entered in document

Betas compared with pCDR


maximize space

minimize apertures

#	name	center	_z center_x	center	_y rad drad	length	angle	B	gradient
#		[m]	[m]	[m]	[m] %	[m]	[mrad]	[T]	[T/m]
12/14	Q2pF	13.070	0.0120	0.00	0.1130 +5	3.600	-8.89	0.000	39.736
	B1pF	16.870	0.0180	0.00	0.1150 -8	3.000	10.00	-4.570	0.000
01/11/19	Q2pF	13.070	-0.0070	0.00	0.1055 -2	3.600	0.00	0.000	39.736
	B1pF	16.870	-0.0045	0.00	0.1090 -13	3.000	5.00	-4.570	0.000
9/21/18	Q2pF B1pF				0.108 0.125				

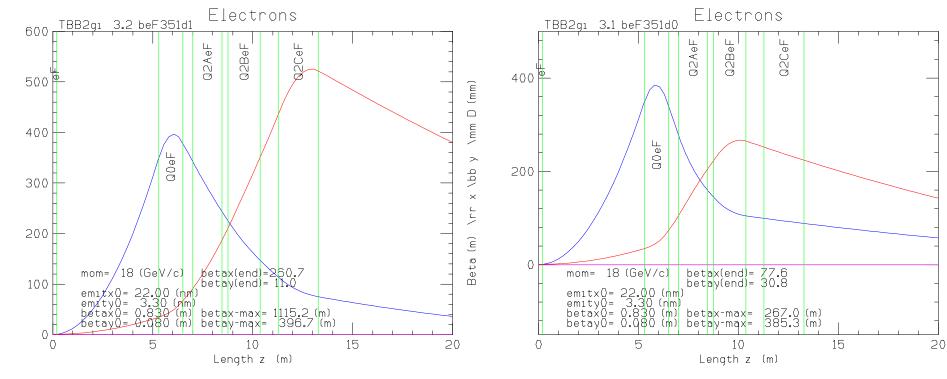
Forward electrons for worst case

		9/21			12/14							
Lc	L	ap1	ap2	grad		Lc	L	ap1	ap2	grad	dap	dgrad
m	m	m	m	T/m		m	m	m	m	T/m	%	%
5.9	1.2	.026	.026	-12.713	Q0eF	5.9	1.2	.025	.025	-12.705	\approx 0	≈ 0
9.565	1.61	.0464	.058	1.675	Q1BeF	9.565	1.61	.0436	.0566	1.155	\approx 0	≈ 0
12.27	2.0	.065	.065	3.846	Q1CeF	12.27	2.0	.069	.069	3.85	+6	\approx 0
	m 5.9 9.565	m5.99.565	Lc L ap1 m m m 5.9 1.2 .026 9.565 1.61 .0464	LcLap1ap2mmmm5.91.2.026.0269.5651.61.0464.058	LcLap1ap2gradmmmmT/m5.91.2.026.026-12.7139.5651.61.0464.0581.675	LcLap1ap2gradmmmT/mT/m5.91.2.026.026-12.713Q0eF9.5651.61.0464.0581.675Q1BeF	LcAp1Ap2gradLcmmmT/mm5.91.2.026.026.12.713Q0eF5.99.5651.61.0464.0581.675Q1BeF9.565	LcLap1ap2gradLcLmmmT/mmm5.91.2.026.026.12.713Q0eF5.91.29.5651.61.0464.0581.675Q1BeF9.5651.61	LcLap1ap2gradLcLap1mmmT/mmmmm5.91.2.026.026.12.713Q0eF5.91.2.0259.5651.61.0464.0581.675Q1BeF9.5651.61.0436	LcLap1ap2gradLcLap1ap2mmmmT/mmmmm5.91.2.026.026.12.713Q0eF5.91.2.025.0259.5651.61.0464.0581.675Q1BeF9.5651.61.0436.0566	LcLap1ap2gradLcLap1ap2gradmmmT/mmmmmT/m5.91.2.026.026-12.713Q0eF5.91.2.025.025-12.705	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Aperture of Q1CeF in 9/21 appears to be an error

But it could be lowered at the price of a higher betamax

Forward electrons for baseline case


A stronger Q0eF allows a closer Q1eF and reduced betamax, but this, for a given worst case divergence, increases the synchrotron fan.

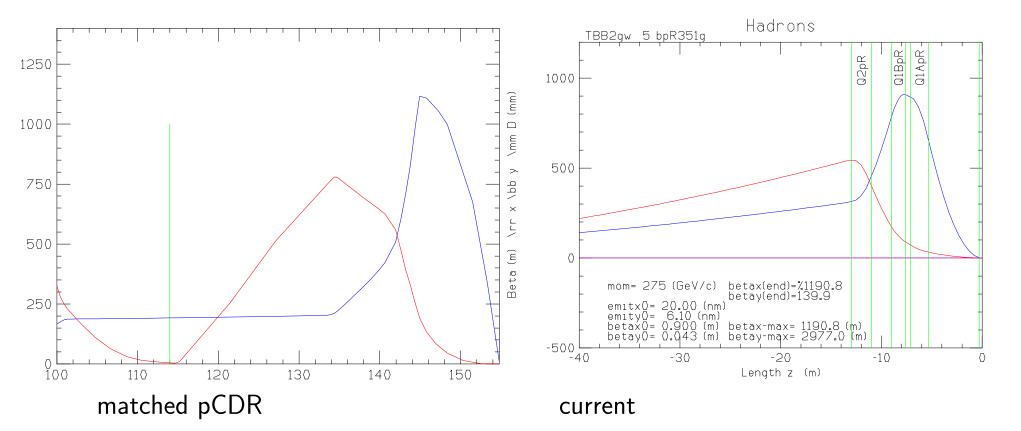
But for the baseline, the initial divergence is less allowing a stronger Q0eF, effectively closer Q1eF, and lower betamax.

To get the effectively closer Q1eF, we introduce a new quad Q1AeF and increase the gradient in Q0eF by 36 %

If this is not possible one would have to back off, allowing the higher betamax.

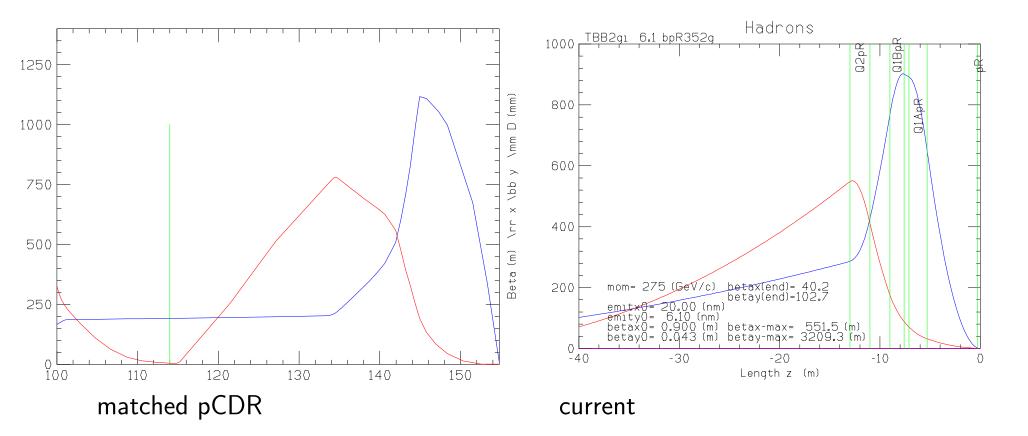
		9/21			12/14								
	Lc	L	ap1	ap2	grad		Lc	L	ap1	ap2	grad	dap	dgrad
	m	m	m	m	T/m		m	m	m	m	T/m	%	%
Q0eF	5.9	1.2	.026	.026	-12.713	Q0eF	5.9	1.2	.025	.025	-17.325	≈ 0	36
						Q2AeF	7.73	1.46	0.03	0.042	5.582	-	-
Q1eF	9.565	1.61	.0464	.058	1.675	Q1BeF	9.565	1.61	.0436	.0566	6.814	\approx 0	407
Q2eF	12.27	2.0	.065	.065	3.846	Q1CeF	12.27	2.0	.069	.069	0	+6	-100

worst case

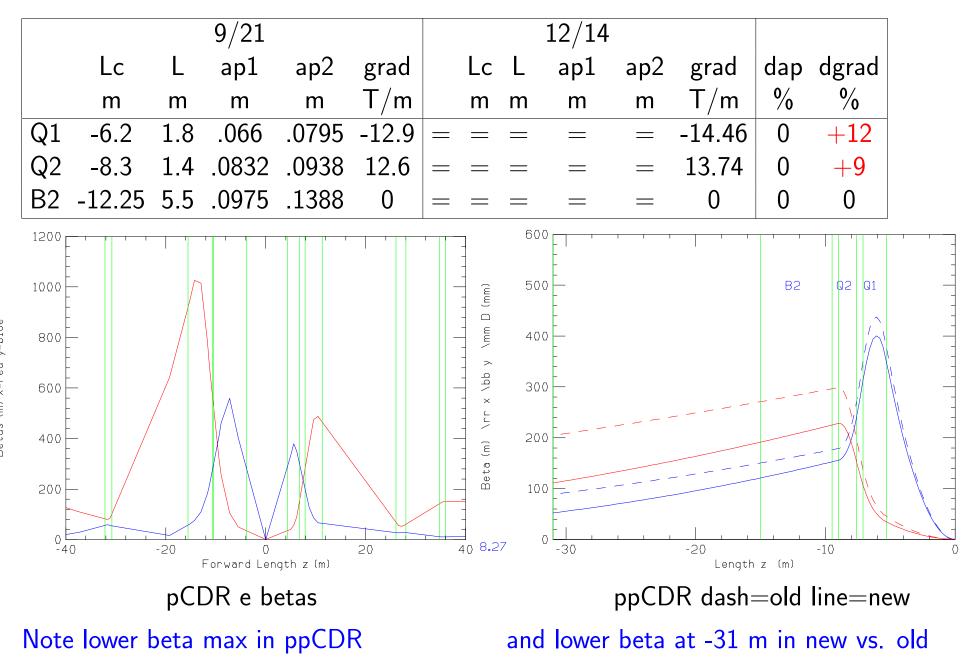

baseline with lower betamax

.

Rear hadron


9/21													
	Lc	L	ap1	ap2	grad		Lc	L	ap1	ap2	grad	dap	dgrad
	m	m	m	m	T/m		m	m	m	m	T/m	%	%
Q1A	-6.2	1.8	.0201	.027	-75.9	=	_	_	.0201	.0256	-83.417	0/-25	+10
Q1B	-9.3	1.4	.0289	.0342	-75.9	=	=	=	.028	.028	-83.417	\approx 0/-18	+10
Q2	-12	2.0	.0418	.0494	+63.25	=	=	—	.05	.05	+77	\approx 0	+22

Betas compared with pCDR


Adjusted Betas compared with pCDR

# name	center_	z center_>	center	_y radius	length	angle	В	gradient	
#	[m]	[m]	[m]	[m]	[m]	[mrad]	[T]	[T/m]	
Q1ApR	-6.200	0.0000	0.00	0.0201	1.800	0.00	0.000	-85.250	+12%
Q1BpR	-8.300	0.0000	0.00	0.0280	1.400	0.00	0.000	-85.250	+12%
Q2pR	-12.000	0.0000	0.00	0.0500	2.000	0.00	0.000	82.500 -	+30%

Clearly Q1pR needs to be longer

Rear electron

Betas (m) x=red y=blue