The Q2pF B1pF and other IR ProblemsFile: 190322-IR8.pdfMarch 22, 2019

This work was done in close collaboration with Holger with ideas from Brett. It was intended to address the problems Holger & others had seen in Version 5A used in the cost review.

Contents

Versions

Problems

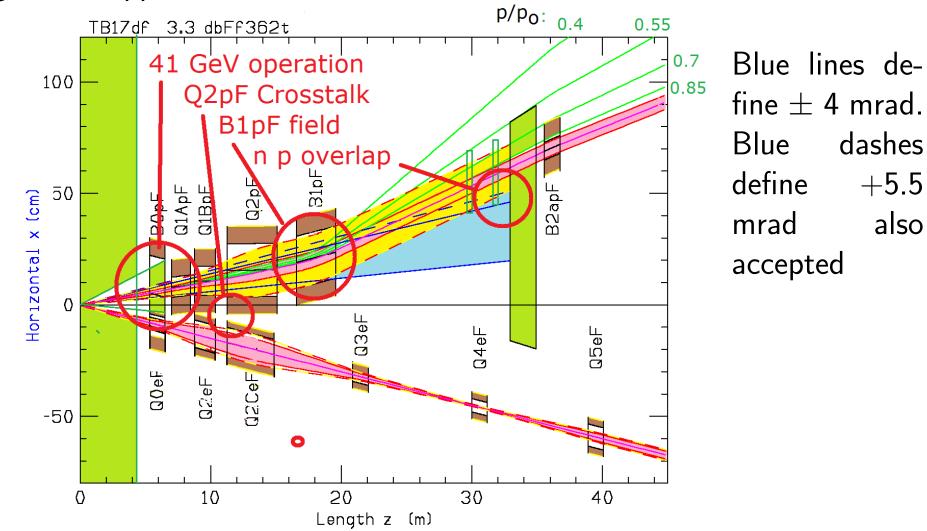
- Step 1) Remove e quad beside Q2pF & SR constraint
- Step 2) Move Q2pF beyond new Q2eF
- Step 3) Location of Q1apF and Q1BpF for minimum apertures
- Step 4) Uses for space between B0pF and Q1ApF
 - 4a) Extended Spectrometer Detector for 1/2 mom. errors
 - 4b) Correction dipole (near source) for lower energy runs
- 4c) Use of 4b to further separate hadrons from neutrons & electrons
- Results 1) Q2pF aperture-aperture separation
- Results 2) Criteria applied
- Results 3) Hadron neutron separation at Roman pots

Conclusion

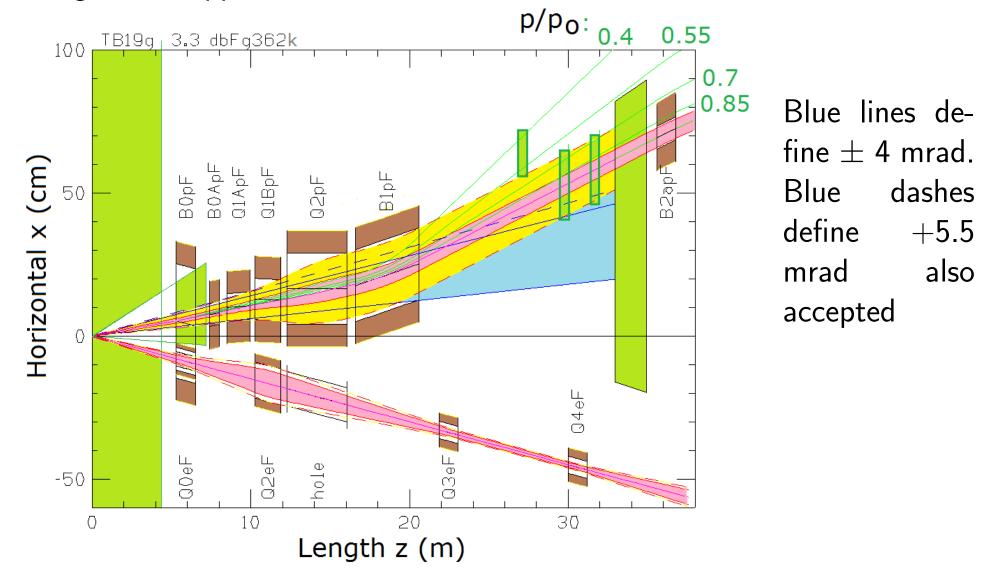

Appendices: parameters for V 5A, V 6.2, V 6.3

Lattice Requirements

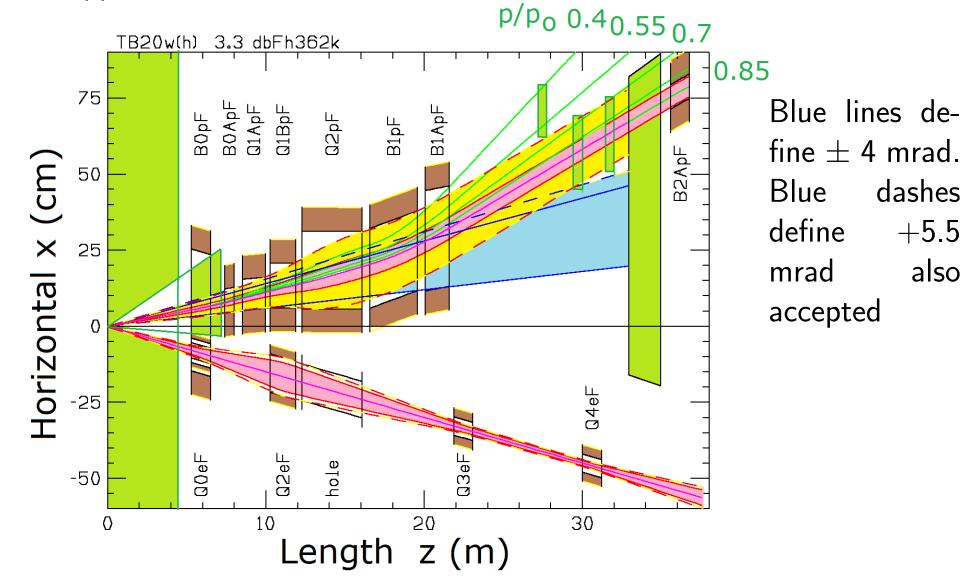
- 1. Achieve required betas at IP: down to 4 cm in y, and down to 50 cm in x
- 2. Transmit hadrons with angles between 5 and \approx 20 mrad to a forward spectrometer.
- 3. Transmit 275 GeV, pt \leq 1.3 GeV/c hadrons to Roman pots.
- 4. Transmit $p/p_o \ge 0.4$ hadrons to a detector.
- 5. Provide locations for crabs with β_x =1200 m for p, and 250 m for e
- 6. Minimize all other betas to control chromaticity
- 7. Minimize fields in all magnets to allow NbTi at 4 K
- 8. Adequately shield between e and p beams
- 9. Minimize fan of synchrotron Radiation SR in IP and beyond (REAR)


Parameter Sets

Version 5 file: 190125-IR.pdf, circulated Jan 25, 2019, and used for Cost Review. After fixing a program bug, the specifications changed little. Corrected parameters (IR-Parameters 5A) circulated Feb. 18, and given in Appendix 1.



Parameter Sets


Version 5 file: 190125-IR.pdf, circulated Jan 25, 2019, and used for Cost Review. After fixing a program bug, the specifications changed little. Corrected parameters (IR-Parameters 5A) circulated Feb. 18, and given in Appendix 1.

Version 6.2, is discussed here: File 190226-IR8.pdf . It has increased L* in response to Holger's concerns with Q2pF. Its parameters are given in Appendix 2.

Version 6.3, is discussed here: File 190226-IR8.pdf . It has easier B1pF specifications and better separation between the hadron beams and neutron cone. B1pF has been divided into two. Its parameters are given in Appendix 3.

The Problems in Version 5A

1. Q2pF-Q2CeF crosstalk

Excessive crosstalk between Q2pF and its side by side electron Quad Q2CeF at the IP end of the magnets.

2. B1pF field and aperture

Compared with RHIC D0 & DX, B1pF appeared to Holger to be unreasonable.

3. Displaced orbits at Low momenta

Orbits at 100 & 41 GeV with a fixed 1.3 T B0pF spectrometer field were excessively displaced, requiring reductions in B0pF field and lower momentum accuracy.

4. Separation between hadrons and neutrons

Elke had complained that the Version 5A Hadron Neutron separation of 29.75 cm at the start of the neutron detector was inadequate, because Roman pot detectors need to be inside the neutron cone (-4 to +5.5 mrad).

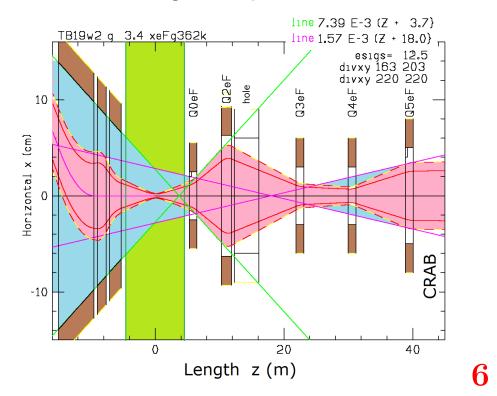
Q2pF approaches considered

1. Further Increasing the crossing angle.

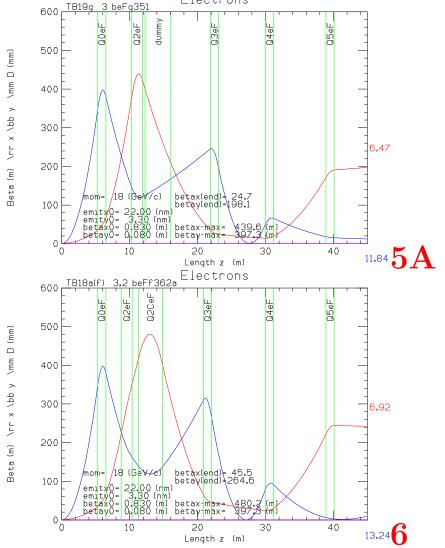
Each additional mrad increases the e-p space 1.13 cm. Several extra mrad would probably be required. Not proposed

2. Q0eF inside detector

If Q0eF is inside the detector, then Q2eF is well short of Q2pF (no side-by side) and the electron beam at Q2pF < 4 cm (\approx 5 cm less than that V 5A) and solving the q2pF problem without increasing L*.


The design of an inside quad, operating in the central detector solenoid, would be challenging. And Elke objected to it. Not proposed

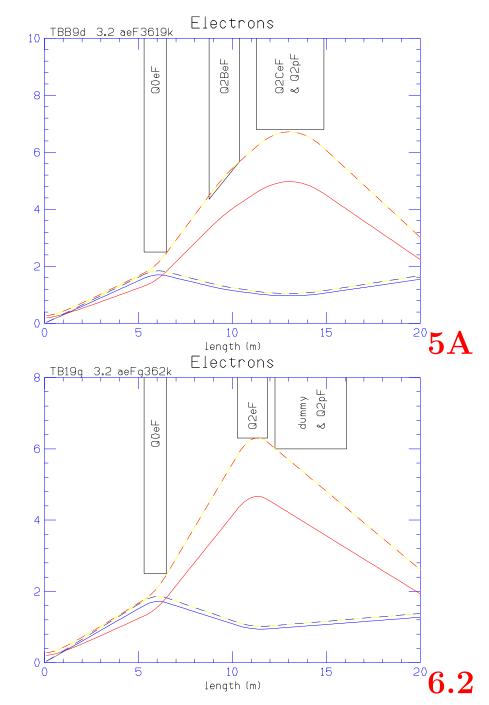
3. Versions with increased L^*


Removing electron focus elements from side-by-side of Q2pF, required moving all hadron focus magnets away from the IP - increasing L*, hadron $\beta_y(max)$ and chromaticity. The aperture to aperture space is increased by at least 5 cm, apparently solving the problem. Proposed here

Step 1) No e quad beside Q2pF & SR constraint

To avoid a large e beam size at Q2pF, Q2eF needed to be located before Q2pF. Not trivial because of the constraint on Q1eF strength from the synchrotron radiation fan divergence of 7.5 mrad that defined the rear electron magnet apertures.

Shown matching to the crab beyond 20 m attempts to follow the PCDR lattice. Probably not optimum.


Step 2) Move Q2pF beyond the new Q2eF

amplitudes (cm

The new electron lattice has the end of Q2eF at 11.87 m compared with V 5A start of Q2pF at 11.27 m.

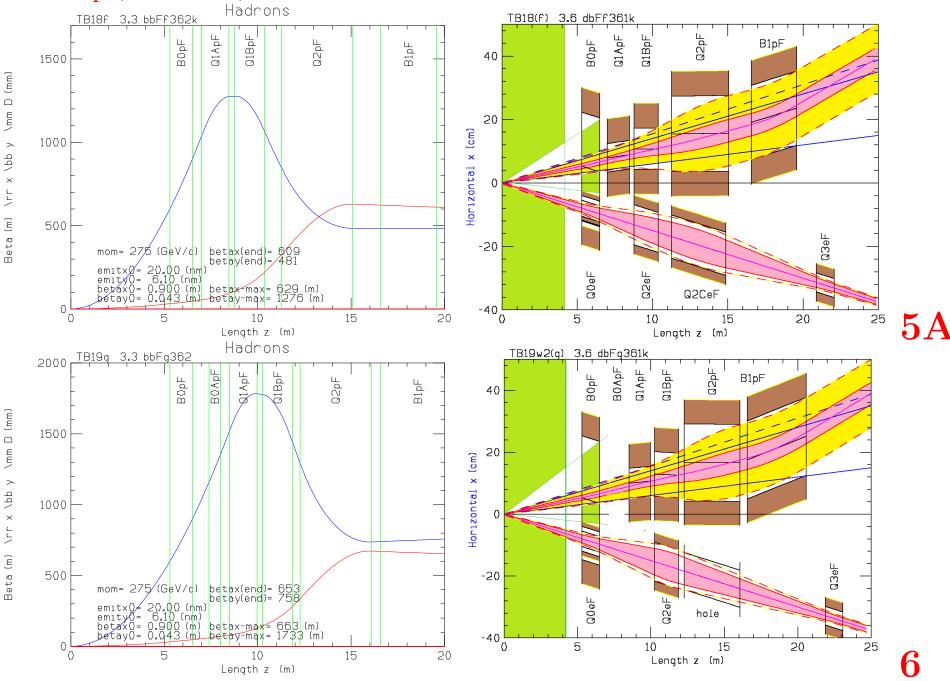
Q2pF has to move back to avoid a side-by-side situation, and also increases the spacing between beams at Q2pF.

Dashed lines are 15 sigma beam envelope with cooling.

amplitudes (cm)

Step 3) Q1ApF and Q1BpF

An earlier study rejected a single Q1pF unless tapered. They were then split into stepped Q1ApF & Q1BpF. This is used here.

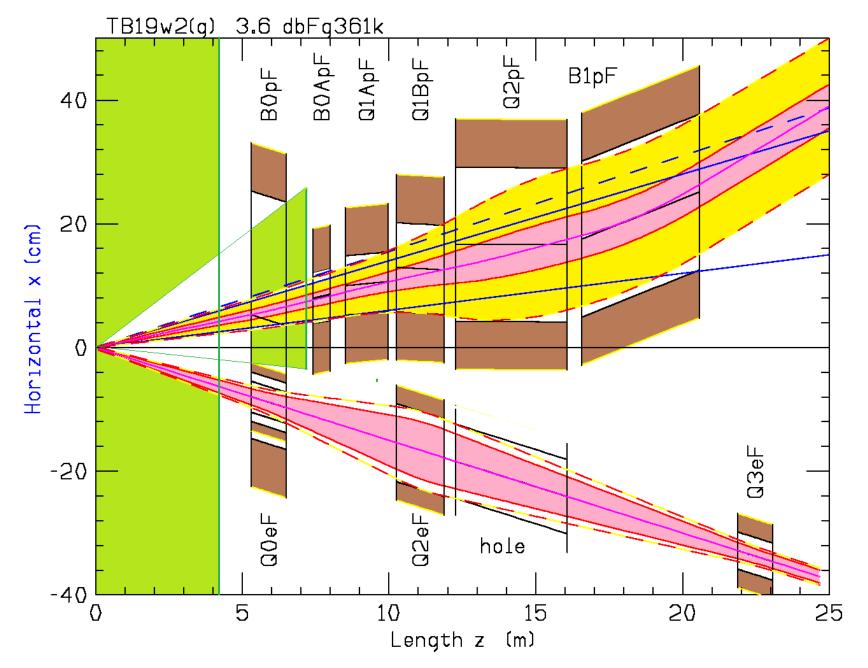

Now Q2pF is back, where to locate Q1ApF & Q1BpF?

Minimizing Q1BpF-Q2pF spacing (moving Q1ApF & Q1BpF away from IP) minimizes Q2pF aperture, decreases the hadron-electron space and allows doubling spectrometer resolution and better correction of low E orbits.

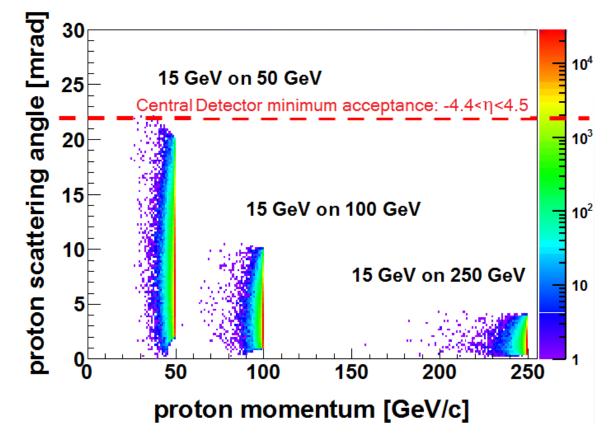
It raises L*, $\beta_y(max)$, and y chromaticity (by 20% from V 5A, 13% from Brett's current). But it is reasonable that some price must be paid to mitigate the Q2pF & other problems.

	\hat{eta}_{py}	$chrom_{py}$	\hat{eta}_{ex}	chrom _{ex}	$chrom_{ey}$
Version	m		m		
5A	1276		500	7.46	13.85
6	1783		440	6.47	11.84
factor	1.4	1.2	0.88	0.87	0.85

$Beta_p(x \& y)$ for 5A and new

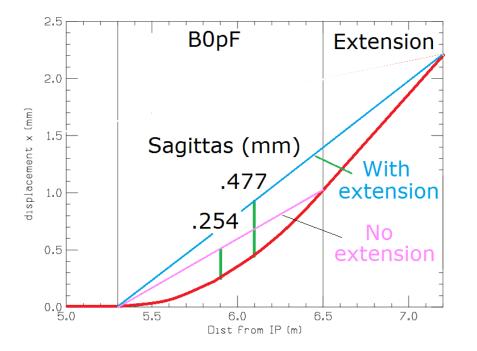

4) Uses for space between B0pF and Q1ApF The increased space between B0pF and Q1Apf now allowed three improvements:

4a The spectrometer detectors associated with B0pF could be extended at least 60 cm beyond the end of B0pF. The displacement and momentum measured accuracy is doubled.


4b A corrector dipole B0ApF can be inserted before Q1ApF to correct, close to its source, the strong upward deflections by B0pF (operating at 1.3 T) at the lower momenta of 100 and 41 GeV/c.

4c This early corrector dipole B0ApF can also be used (in V 6.3) to give upward deflections at all momenta, increasing the electron and protons separation at Q1ApF, Q1BpF, and Q2pF. This was NOT done in version 6.2 because it greatly increased the aperture of B1pF that must accept both the upward displaced protons and the un-displaced neutron cone and exceeded the criterion for what is practicable (see slides 22 & 23).

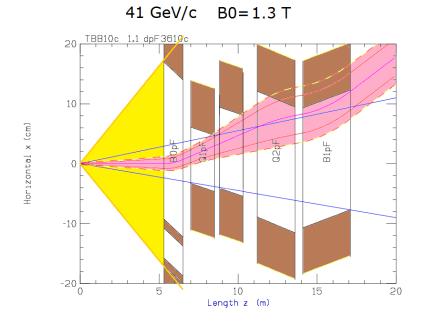
Layout of V 6.2 (with spectrometer extension and B0ApF)



4a) Diffractive Physics

- Forward protons at 275 GeV/c will be observed in Roman Pots.
- Forward protons at 100 and 41 GeV/c will be observed in Roman Pots below 5 mrad and in the forward spectrometer under B0pF above that.
- Momentum spreads \approx 20 % so desired resolution is \leq \approx 2%.
- With 25 micron resolution and Version 5A , the 100 GeV resolution is 6% (2.5% at 41 GeV) and appears inadequate.

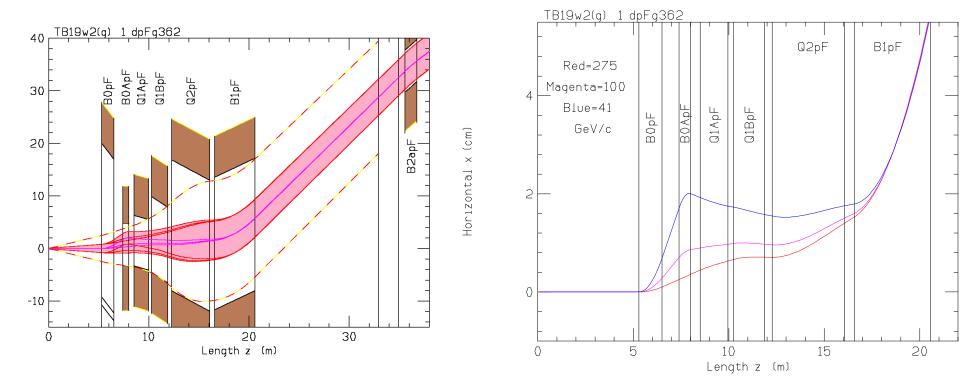
Extended detectors after B0pF



Assuming 3 point measurement to 25 microns, momentum resolution in 1.2 m B0pF at 100 GeV/c is only 6.2%. This can be reduced to 3.3% if the detector is extended 70 cm beyond the magnet.

Mom			No extension	With extension
275 GeV/c		(mm)	0.25	0.48
	rms dp/p	(%)	17	9
100 GeV/c	—	(mm)	0.69	1.32
	rms dp/p	(%)	6.2	3.3
41 GeV/c	Sagitta	(mm)	1.68	3.22
	rms dp/p	(%)	2.5	1.3

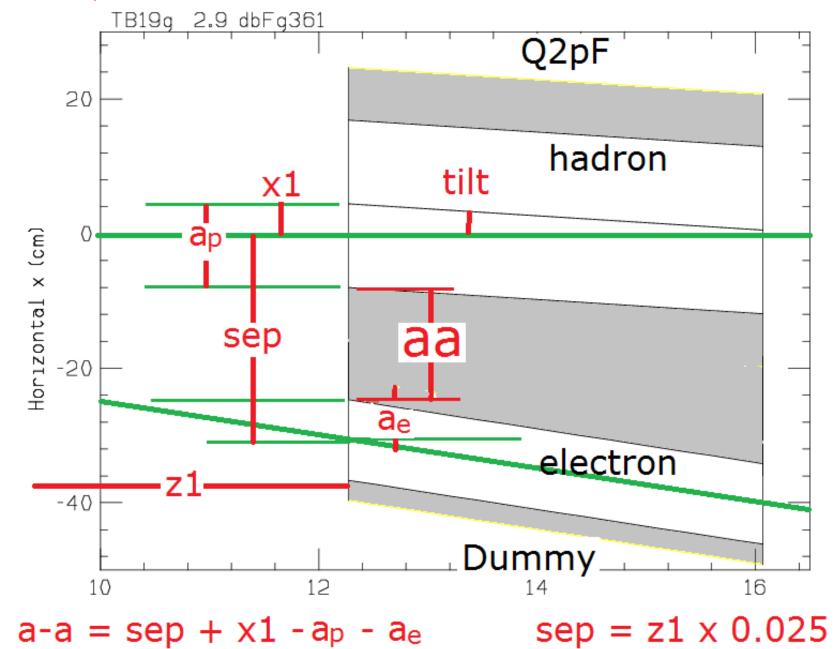
4b) Correction of orbits for lower Energies


- The deflection in B0pF at 275 GeV/c is 1.3 mrad, but at 41 GeV/c it is 8.8 mrad: a difference of 7.5 mrad.
- \bullet If uncorrected, the beam at 41 GeV/c soon leaves the beam pipe.

- If corrected only after Q1ApF the beam's maximum displacement is 2.5 cm.
- If corrected before Q1ApF it is reduced to 1.3 cm.
- Correcting near the source helps.

Orbits vs Energy

Superimposed 41, 100, 275 GeV for V 6.2. Orbits identical after B1pF.



10 sigma beams

beam axes

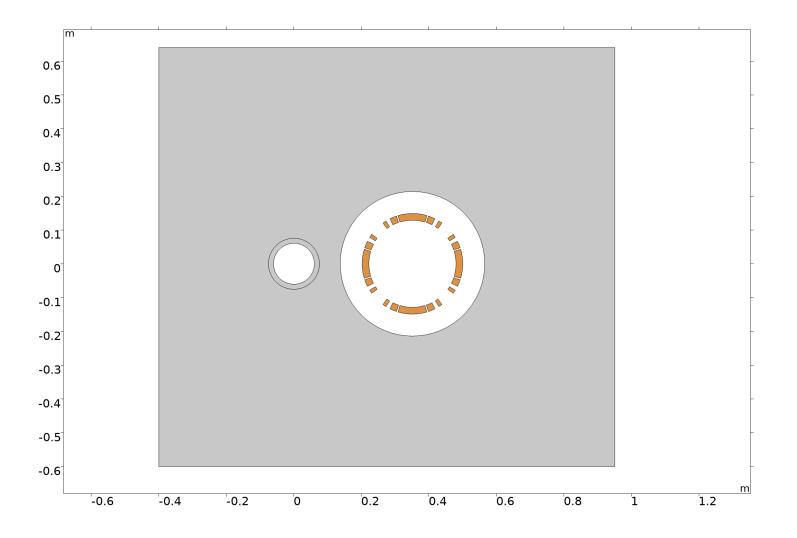
Momentum	Max offset	B0pF	B0ApF	B1pF
GeV/c	cm	Т	Т	Т
275	0	1.3	-3.3	-3.4
100	.51	1.3	+1.03	-1.30
41	1.68	1.3	+2.49	-0.589

Results 1) Q2pF Aperture-aperture separation

Gains in aperture separation (aa) in Q2pF

	L1	L2	sep	x1	e app	p app	grad	B_{pt}	аа	gains
	m	m	m	m	m	m	T/m	Т	m	cm
5A	11.27	15.07	.2817	0.042	0.087	0.119	38.7	4.60	0.1177	0
6.2	12.27	16.07	30.67	0.044	0.06	0.124	40.7	5.07	0.1668	4.9
6.3	12.27	16.07	30.67	0.062	0.06	0.127	40.7	5.07	0.1847	6.7

Larger separation aa (proton aperture to electron hole aperture) eases cross-talk and allows space for correctors or vacuum insulation.


aa Gain in V 6.2 (4.9 cm) is \approx equally from greater beam-beam separation (2.5 cm) and smaller e beam (2.7 cm).

In V6.3 the gain increases by almost another 2 cm from the greater vertical beam shift (X1) from B0ApF.

Note that not tilting Q2pF would lose 4.4 cm: almost all the V 6.2 gain and 2/3 of 6.3 gain. Probably not viable

V 6.2 Q2pF Holger Design

At IP end of Q2pF

Easier with V 6.3 allows correctors/vacuum insulation etc.

Dipole magnet criteria of difficulty

Possible criteria are: the mid-plane azimuthal force per unit length (related to azimuthal motion and pre-compression) $\propto D1 = B^2 A$; and the stored energy per unit length $\propto D2 = (BA)^2$.

Both are given for the maximum performances of RHIC D0 and DX.

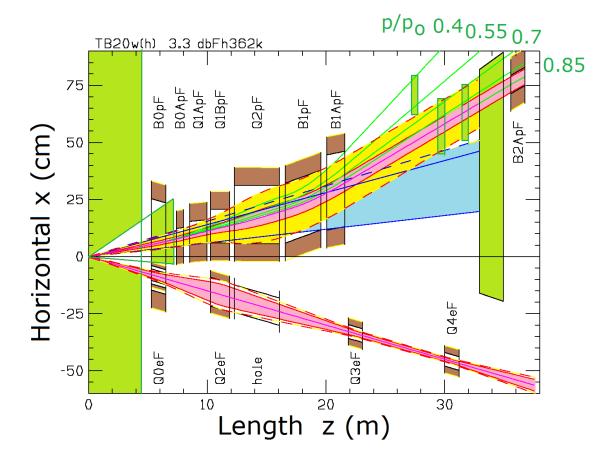
	Α	В	$(BA)^2$	B^2A
	m	Т	$(Tm)^2$	$T^2 m$
D0 maximum	.05	5.35	.07	1.43
DX maximum	.09	4.72	.18	2.0

The greater similarity of B^2A for the two magnet sizes suggests that this is the better criteria to use.

For this we assume a safe operating value of $D2 \approx 1.43$.

Results 2) Criteria applied to B1pF (& B1ApF)

Using the above criterion, B1pF in Version 5A is clearly beyond what can be specified without significant study and possible R&D. Version 6.2 is better but still challenging.


In Version 6.3, if balanced, both magnets meet the criterion.

	А	В	$(BA)^2$	$B^2 A$	
	m	Т	$(Tm)^2$	$T^2 m$	
V 5A B1pF	.119	4.57	.3	2.5	X
V 6.2 B1pF	.126	3.71	.2	1.73	?
V 6.3 B1pF	.136	3.4	.22	1.57	?
V 6.3 B1ApF	.165	2.7	.20	1.2	ok
V 6.3 balanced			0.21	1.45	ok

2 magnets, vs. 1, could cost more but easier magnets less.

Results 3) Hadron-Neutron separation

Version	sep	sep-sep(5A)	
	cm	cm	
5A	29.7	0	After correction
6.2	31.63	1.9	Increased L* solution
6.3	35.8	6.1	B1pF split to B1pf and B1Apf

This was not the primary aim of versions 6.2 and 6.3, but surely welcome to Elke et al.

Conclusion

- The cost review IR had 2 magnet, and 2 other, problems
- Moving Q2pF beyond the earliest placed Q2eF avoids side-by side magnets for Q2pF
- Moving Q1Apf and Q1Bpf close to Q2pF (in V 6.2) :
 - 1. Minimized aperture of Q2pF
 - 2. Allowed spectrometer extension halving errors
 - 3. Allowed Corrector dipole B0ApF for low E orbits
 - 4. But raised hadron y chromaticity by 20% (13% from Brett)
- Breaking B1pF (in V 6.3) into an initial lower aperture, and later larger aperture but lower field, magnets:
 - 1. Reduced the difficulty criteria of these magnets to that of D0 & DX RHIC magnets
 - 2. Allowed an increased e-p separation in all quads, and increased the p-n separation at the Roman pots.

Appendix 0: Parameter list conventions

The tables use Brett Parker's conventions:

- "rad1" is the minimum inside magnet aperture at the IP end of magnets. "rad2", if tapered, is the larger aperture father from the IP.
- "center-x", "center-y", "center-z" are the horizontal, vertical and distance along the beam, of the magnet centres, with respect to a Z axis passing through the IP parallel with the hadron beam at the IP.
 x=y=z=0 is at the IP.
- "angle" is the horizontal angle between the magnet axis and Z axis
- The term "Baseline" is used for 140 GeV c of m, High Divergence, No Cooling. Apertures for other cases estimated by scaling their greater divergences.
- Gradients given are only approximate because:
 - Matching will likely change them
 - -My program is not exact

Appendix 1: Parameters 5A

#												
#												
# TB18f #	zpF1362	Hadron for	rward 2	275								
	x beta*	_y gm emit	t x gm e	mit v	angle	x angl	e v	mom				
# [m]	[m]	_, 8 0 [nm]	[nm]	v	[mrad]	[mrad]	v	GeV/c				
0.9000	0.0430	20.000		1000	25	0		275				
#						·						
# name	center	_z center_z	x rad1	rad2	length	angle	В	gr	ad ap x	grad	x1	x2
#	[m]	 [m]	{m}	[m]	[m]	[mrad]	[Т	0	-	[T]	[m]	[m]
BOpF	5.900	-0.0150	0.170 0	0.170	1.20	-25.0	-1.30	0.0		. 000	0.0000	-0.03
Q1ApF	7.730	0.0067	0.045	0.045	1.46	-3.2	0.00	-80.2	251 -:	3.611	0.0090	0.0
Q1BpF	9.565	0.0119	0.065	0.065	1.61	-10.0	0.00	-66.	180 -4	1.302	0.0200	0.0
Q2pF	13.170	0.0239	0.119 0	0.119	3.80	-9.5	0.00	38.7	00 4	. 605	0.0420	0.00
B1pF	18.070	0.0325 (0.117 0	0.117	3.00	5.0	-4.57	0.0	0 00	. 000	0.0250	0.04
B2apF	36.170	0.3430	0.040	0.040	1.20	15.6	3.30	0.	000 (0.000	0.3336	0.3
B2bpF	47.370	0.5120	0.040	0.040	1.20	20.0	-0.00	0.	000 (0.000	0.5000	0.5
#												
# name	center_	_z x(bea	am) the	eta E	Bdist1	Bdist2	al	phax	betax	alph	ay	betay
#	[m]	[m]	(mr	ad)	(T)	(T)		-	[m]	-	U	[m]
BOpF	5.900	0.0003	0.85	51	0.000	0.00	0 –	6.546	39.567	-123	.503 7	42.602
Q1ApF	7.730	0.0030	1.3	859	0.431	0.1	63 –	12.980	70.208	3 -8	2.829 1	209.34
_ Q1BpF	9.565	0.0050	0.5	574	0.746	0.1	81 -	34.295	151.798	36	7.998 1	225.26
Q2pF	13.170	0.0087	2.50	94 -	-1.008	-0.13	7 -4	4.062	544.792	43	.254 5	63.182
B1pF	18.070	0.0281	10.26	5	0.000	0.00	0	1.973	617.389	0	.239 4	82.849
- B2apF	36.170	0.3430	15.5	83	0.000	0.0	00	1.830	548.553	3	0.199	474.92
- B2bpF	47.370	0.4940	13.4	-24	0.000	0.0	00	1.741	508.560)	0.175	470.73

Appendix 2: Parameters 6.2

#												
#				1 075								
# 1B19w2 #	(g) zbFg362 v	5.2 Hadro	n forward	1 275								
	r botov r m	amit z am	omit	angla								
# beta*_ # [m]	x beta*_y gm ([m] [ni	•	•	nrad]	x angi [mrad	•	nom eV/c					
# [m] 0.9000			այ լո 6.1000	11 au 25	сштао 0	27						
#	0.0430 20	.0000	0.1000	20	0	Z	5					
# # name	center_z cent	er v rad1	rad? 1	length	angle	В	grad	ap x grad	x1	x2	cc1	cc2
# 11dille	[m] [m]			[m]	[mrad]		[T/m]	ар х grad [T]	[m]	[m]	[m]	[m]
" B0pF	5.900 -0.015		0.200		-25.0		0.000	0.000		-0.0300	0.1325	0.1325
BOApF	7.700 0.000			0.60		-0.00	0.000	0.000	0.0080	0.0080	0.1930	0.2080
Q1ApF	9.230 0.01			1.46	-5.5	0.00	-72.608	-3.485	0.0150	0.0070	0.2275	0.2560
Q1BpF	11.065 0.01			1.61	-12.5	0.00	-66.180	-4.765	0.0269	0.0068	0.2834	0.3035
Q2pF	14.170 0.024		0.124		-10.2	0.00	40.737	5.072	0.0441	0.0053	0.3508	0.4071
B1pF	18.570 0.027		0.126	4.00	9.0	-3.71	0.000	0.000	0.0095	0.0455	0.4238	0.5598
B2apF	36.170 0.34	74 0.040	0.040	1.20	17.0	3.00	0.000	0.000	0.3372	0.3576	1.2264	1.2768
B2bpF	47.370 0.51	26 0.040	0.040	1.20	14.7	0.00	0.000	0.000	0.5037	0.5214	1.6730	1.7206
#												
# name	center_z x	(beam) t	heta Bo	list1	Bdist2	2 alph	nax bet	ax alph	ay be	etay		
#	[m]	[m] (1	mrad)	(T)	(T)		[m]		[m]		
BOpF	BO 5.900	0.0003	0.851	0.0	00	0.000	-6.546	39.567	-123.503	742.602		
BOApF	BOA 7.700	0.0031	1.702	2 0	.000	0.000	-8.541	66.722	-160.477	7 1253.7	66	
Q1ApF	Q1A 9.230	0.0055	1.240) 0	.580	0.222	-15.888	99.301	-91.099	9 1722.6	41	
Q1BpF	Q1B 11.065	0.0071	0.197	7 0	.987	0.308	-41.763	198.363	109.055	5 1680.5	91	
Q2pF	•	0.0094	2.166	-1.0		-0.136	-49.176	578.695	65.625	850.979		
B1pF		0.0283	10.535	0.0		0.000	2.444	660.513	-2.651	750.176		
B2apF	B2a 36.170	0.3474	16.659		.000	0.000						
B2bpF	B2b 47.370	0.5126	14.696	6 0	.000	0.000	2.140	528.490	-2.959	9 911.7	35	

#-#

------# TB19w2(g) zbFg362 Electron Forward 18 # # beta*_x beta*_y gm emit_x gm emit_y angle_x angle_y mom # [m] [m] [nm] [nm] [mrad] [mrad] GeV/c 22.0000 3.3000 0.8300 0.0800 0 25 18 # center_z center_x rad1 rad2 length angle # name В x2 cc1 cc2 grad ap x grad $\mathbf{x1}$ {m} [T] # [m] [m] [m] [m] [mrad] [T/m] [T] [m] [m] [m] [m] 5.900 -0.1475 0.025 0.025 1.20 25.0 0.00 -13.540 -0.338 0.0000 Q0eF 0.0000 0.1325 0.1625 7.730 -0.1933 0.030 0.042 0.00 25.0 0.0000 Q2AeF 1.46 0.000 0.000 0.0000 0.1750 0.2115 Q2eF 11.065 -0.2766 0.063 0.063 1.61 25.0 0.00 8.008 0.505 0.0000 0.0000 0.2565 0.2968 0.000 0.0000 14.170 -0.3543 0.060 0.060 3.80 25.0 0.00 0.000 0.0000 0.3067 0.4017 22.470 -0.5617 0.030 0.030 1.20 25.0 -11.627 -0.349 0.0000 0.00 0.0000 0.5468 0.5767 Q3eF Q4eF 30.600 -0.7650 0.030 0.030 1.20 25.0 0.00 -15.400 -0.462 0.0000 0.0000 0.7500 0.7800 0.9725 Q5eF 39.500 -0.9875 0.050 0.050 1.20 25.0 0.00 4.023 0.201 0.0000 0.0000 1.0025 45.700 -1.1425 0.040 0.040 1.20 25.0 0.00 0.000 0.000 0.0000 B2beF 0.0000 1.1275 1.1575 # x(beam) theta Bdist1 Bdist2 # name center_z alphax betax alphay betay # (T) (T) [m] [m] (mrad) [m] [m] 0.000 46.060 -14.487 -13.149Q0eF 5.900 0.0000 0.000 0.000 394.869 Q2AeF 0.0000 0.000 0.000 -35.034 140.924 7.730 0.000 33.430 292.532 Q2eF 11.065 0.0000 0.000 0.000 0.000 -16.194434.984 7.913 123.004 25.221 296.272 -5.623 145.425 14.170 0.0000 0.000 0.000 0.000 dummyeF 22.470 0.000 0.000 0.000 4.244 27.792 Q3eF 0.0000 20.747 237.235 30.600 0.0000 0.000 0.000 -1.859 15.152 -5.930 Q4eF 0.000 64.370 -8.172 185.403 Q5eF 39.500 0.0000 0.000 0.000 0.000 1.192 16.335 0.000 0.0000 0.000 -0.698 0.038 12.359 B2beF 45.700 0.000 198.366

#

Appendix 3: Parameters 6.3

#						
#						
# TB20w(h) zpFh362 Hadron f	forward 275				
#						
# beta*_	x beta*_y gm emit_	_x gm emit_y angle	e_x angle_y	mom		
# [m]	[m] [nm]	[nm] [mrad]		eV/c		
0.9000	0.0430 20.0000	0 6.1000 2	5 0 2	75		
#						
# name		rad1 rad2 lengt	0	0 1 0	x1 x2	cc1 cc2
#	[m] [m]	{m} [m] [m]	[mrad] [T]	[T/m] [T]	[m] [m]	[m] [m]
BOpF			-25.0 -1.30	0.000 0.000	0.0000 -0.0300	0.1325 0.1325
BOApF		0.040 0.040 0.6		0.000 0.000	0.0080 0.0080	0.1930 0.2080
Q1ApF		0.051 0.051 1.4		-72.608 -3.703	0.0180 0.0100	0.2305 0.2590
Q1BpF		0.073 0.073 1.6		-66.180 -4.831	0.0309 0.0148	0.2874 0.3115
Q2pF		.127 0.127 3.80		40.737 5.194	0.0621 0.0233	0.3688 0.4251
B1pF		.131 0.131 3.00		0.000 0.000	0.0245 0.0515	0.4387 0.5408
B1ApF		0.165 0.165 1.5		0.000 0.000	0.0800 0.0800	0.5817 0.6192
B2ApF		0.040 0.040 1.20		0.000 0.000	0.8787 0.9027	1.7680 1.8220
B2bpF	47.370 1.3064 (0.040 0.040 1.20	0 35.8 0.00	0.000 0.000	1.2850 1.3279	2.4542 2.5271
#						
# name		n) theta Bdist1	-		ay betay	
#	[m] [m]	(mrad) (T)	(T)	[m]	[m]	
BOpF	B0 5.900 0.000		.000 0.000		-123.503 742.602	
BOApF		0081 6.955	0.000 0.000		-160.477 1253.7	
Q1ApF			-0.086 -0.413			
Q1BpF	•		-0.281 -0.736			
Q2pF	Q2 14.170 0.080		.267 0.930	-80.214 1543.746	-57.891 62.188	
B1pF	B1 18.070 0.122	20 20.607 0	.000 0.000	141.072 533.862	-485.845 2087.753	3
B1ApF		2087 40.052	0.000 0.000			
B2ApF		9046 40.659	0.000 0.000		%-2532.243 %567	15.930
B2bpF	B2b 47.370 1.3	3064 35.750	0.000 0.000	-8.071 7204.611	%-3798.502 %127	620.227
#						

Electron parameters for V 6.3 the same as for V 6.2

#