National Synchrotron Light Source II

Impedance optimization for eRHIC

A. Blednykh Accelerator Physicist June 19, 2019

Outlook

Impedance modeling and collective effects analysis

- $ReZ_{||}(\omega)$ at high frequencies (microwave instability), $ImZ_{||}(\omega)$ at low frequencies (bunch lengthening)
- Beam related heating
 - $ReZ_{||}(\omega)$ at low frequencies (vacuum components heating), resistive wall and geometric impedance.

NSLS-II Impedance Budget $\sum (ImZ_{||}/n)_0$

Name of components		Number of components	$\sum (ImZ_{ }/n)_0$
			 mΩ
Bellows 5in	BLW5	218	3.8
Bellows 6in	BLW6	?	?
Large Aperture BPM	LABPM	237	6.4
Small Aperture BPM (11.5mm x 60mm)	SABPMDW	10	0.4
Small Aperture BPM (8mm x 55mm)	SABPMEPU	3	0.2
Damping Wiggler Chamber (11.5mm x 60mm)	DW	3	0.7
Elliptically Polarized Undulator Chamber (11.5mm x 60mm)	EPU1	2	0.5
Elliptically Polarized Undulator Chamber (8mm x 55mm)	EPU2	2	0.6
Gate Valve (Standard)	GV	61	2.3
Flange Absorber (21mm x 64mm)	FABS	67	7.7
Flange Absorber S4 (21mm x 64mm)	FABSS4	39	4.0
Flange Absorber Rest	FABS2	7	TBD
Stripline (BBF), L=310mm	SL300	2	90
Standard RF Sealed Flanges	FLNG	739	56.9
EPU RF Sealed Flanges	EPUFLNG	4	0.07
DW RF Sealed Flanges	DWFLNG	13	0.2
Direct-Current Current Transformer	DCCT	1	TBD
Kickers Ti-Coated Ceramics Chambers	ССНМ	5	TBD
Stripline (TMS), L=160mm	SL150	2	40
In-Vacuum Undulator	IVU	9	3.8
Septum Chamber	SPTM	1	0.05

BROOKHAVEN NATIONAL LABORATORY

Office of Science

Name of components		Number of	
		components	$\sum (ImZ_{ }/n)_0$
			$m\Omega$
RF Straight Section			
RF HOM Damper	HOMD	2	60
500 MHz RF Cavity*	CAV	2	12.4
RF Tapered Transition	TPRDRF	1	7
RF Flange Absorber (21mm x 64mm)	FABSRF	1	0.1
Medium Aperture Gate Valve (Ø12mm)	MEGV	1	
Medium Aperture RF Sealed Flanges (Ø122.68mm)	MEFLNG	4	
Large Aperture Gate Valve (Ø240mm)	LAGV	2	
Large Aperture RF Sealed Flanges (Ø240mm)	LAFLNG	9	0.2
Large Aperture Bellows (Ø240mm)	LABLW	3	
Welding joints	WLD	240	0.8
Diagnostic Stripline, L=160mm	DSL	1	10
Tota	al:		308.1

eRHIC Impedance Budget $\sum (ImZ_{||}/n)_0$

Name of components		Number of components	$\sum_{n} (ImZ_{ }/n)_{n}$
			 mΩ
Bellows 5in	BLW5	380	
Large Aperture BPM	LABPM	494	
Stripline	SL	18	
Gate Valve	GV	45	
Flange Absorber	FABS	200	
RF Cavity	CAV	23	
RF Tapered Transition	-		TBD
IR Chamber	-		TBD
Pumping Slot	PMPSLT	500	TBD
Crab Cavity			TBD
0.08 0.06 0.04 0.02 0.02 0.00 0.02			

Table 3.14: Parameters used for threshold calculation.

Ι	Parameter	Valu	e
H	Energy E [GeV]	10	
ŀ	Revolution period	$T_0 [\mu sec]$ 12.7	9
Ν	Momentum compa	ction α 1.45 × 1	10^{-3}
H	Energy loss U [keV	·] 9100	0
ŀ	RF voltage V [MV]	41	
5	Synchrotron tune v	s 0.081	15
Ι	Damping time τ_x , τ	T_s [msec] 70, 3	5
H	Energy spread σ_{δ}	5.5 imes 1	0^{-4}
H	Bunch length σ_s [m	m] 19	
	Average Current:	I _{av}	= 2.48 <i>A</i>
I	Number of Bunches:	M = 660	
	$P_{loss} =$	$k_{loss}I_{av}^2T_0/M$	
eRHIC (2.5A)	APS-U (0.2A)	KEKB (1A)	NSLS-II (0.4A
$k_{loss} \times 24620$	k _{loss} ×3068	k _{loss} ×4000	k _{loss} ×402
$\sigma_s = 20mm$	$\sigma_s = 20mm$	$\sigma_s = 4mm$	$\sigma_s = 5mm$
M = 660	M = 48	M = 2500	<i>M</i> = 1050

eRHIC Very Rough IR Chamber Design

longitudinal impedance divided by $n = \omega / \omega_0$, where $\omega_0 = 2\pi \times 78.186$ kHz.

eRHIC IR Chamber Updated With Grounded e⁻-Pipe

eRHIC IR Chamber Design Studies

Symmetry A

Kloss, mV/pC

10

Symmetry B

KEKB IR Chamber Design

LER typical (~90%) Aluminum w/ antechamber

HER typical (~70%) Copper w/o antechamber

-The SKEKB IR chamber uses as a reference optimized chamber from impedance point of view

SuperKEKB IR Chamber

U.S. DEPARTMENT OF ENERGY Office of Science NATIONAL LABORATOR