Electron Storage Ring Version 5.1

Steven Tepikian

July 24, 2019

- Differences from Version 5.0
- Geometry comparison with existing Blue and Yellow rings
- Averaged FODO cell in the ARCs
- Solenoid modules

Following, both $10 \, GeV$ and $18 \, GeV$ are presented:

- Two Colliding sections (IR8 in non-colliding mode)
- Four straight sections
- Full ring
- Radiation parameter behavior with average momentum shift

Differences from Version 5.0

- Reduced quadrupole strength in the solenoid modules
 - Simplified solenoid modules (to 5 quadrupoles)
 - Horizontal dispersion can be non-zero through the module
- Fewer quadrupoles in the spin rotator dipole modules
- Geometry rematch
- IP12 (for injection) is not a zero dispersion straight section
- Matching the $\partial \eta_{\times} / \partial \delta$ to the arcs.
 - Improves the emittance behavior with momentum
- Phase advance across the colliding IRs to be 360°.
- Some additional quadrupoles in the straight sections
 - $\bullet\,$ More may be needed to reduce the β values
- Updated the IR quadrupoles from B. Palmer

Ring Geometry – Relative to the current Blue ring

IP	Shift [m]	Angle [mrad]
IP6	-0.81	8.00
IP8	-0.81	8.00
IP10	-1.50	-1.26
IP12	0.00	-12.00
IP2	1.25	-5.12
IP4	0.00	8.31

- Circumference = 3833.940 m
- Path length from IP6 to IP8 = 640.940 m

★ Ξ →

Average length FODO FCell: 90° and 60°

- The corresponding GCell is the mirror image of the FCell.
- Drift space between dipole and quad varies from ARC to ARC
- BPMs are between the sextupole and quadrupole

Cell length [m]	19.423
Dipole length [m]	7.400
Quadrupole length [m]	0.600
Sextupole length [m]	0.500
Corrector length [m]	0.250
Dipole bending radius [m]	289.906

- Cell length varies for the arcs giving different average radii
- The drift space which will hold the orbit corrector is changed
- Room to increase the dipole length.

Arcs distribution through the ring

< 一型

-

Short Solenoid Module, using 18 GeV solenoid strengths

Quad	Length	Strength
	[m]	$[m^{-2}]$
QB15	1.10	0.42069
QB16	1.45	-0.47319
QB18	2.30	0.48933
QB22	1.45	-0.47319
QB23	1.10	0.42069

$$\mu_x = 0.81864 \ \mu_y = 0.44148$$

Length = 14.8 m

Long Solenoid Module, using 18 GeV solenoid strengths

Quad	Length	Strength
	[m]	$[m^{-2}]$
QA15	1.10	0.46869
QA16	1.45	-0.49901
QA18	2.30	0.47028
QA22	1.45	-0.49901
QA23	1.10	0.46869

$$\mu_x = 1.10276 \ \mu_y = 0.51994$$

Length = 28.1 m

 $\mathsf{IR6}
ightarrow eta_{max} = (860 \, m, 645 \, m)$ with $eta^* = (42 \, cm, 5 \, cm)$

18 GeV

10 GeV

э

IR8 – Non-colliding mode (solenoids are off, $\beta_{max} \lesssim 40 m$)

18 GeV

10 GeV

IR10 – Straight Section with RF cavities

18 GeV

10 GeV

IR12 - Straight section will include the injection system

18 GeV

10 GeV

IR2 – Straight Section

18 GeV

æ

IR4 – Straight Section

18 GeV

æ

36.582 *MeV/turn*, Emittance = 33.9 *nm* and β_{max} = 860 *m*

- 4 市

18 GeV: Dispersion functions

18 GeV: Chromatic functions

10 GeV: Full ring, $Q_x = 42.12$, $Q_y = 35.1$, 60° cells

3.485 *MeV/turn*, Emittance = 23.0 *nm* and $\beta_{max} = 860 m$

< 17 ▶

10 GeV: Dispersion

< 一型

æ

э

10 GeV: Chromatic functions

18 GeV	,	
Order	Chrom X	Chrom Y
0	0.120	0.100
1	0.909	0.941
2	-7420	-4663
3	$-1.717 imes10^5$	$3.767 imes10^{6}$
4	$-6.113 imes10^8$	$-1.240 imes 10^{9}$

10 001		
Order	Chrom X	Chrom Y
0	0.120	0.100
1	0.883	0.915
2	-2590	-5406
3	$1.666 imes10^5$	$4.225 imes10^{6}$
4	$2.364 imes10^8$	$-3.329 imes10^9$

• • = • • = •

$$\alpha_{xx} = -938.0$$

 $\alpha_{xy} = \alpha_{yx} = -8947.9$
 $\alpha_{yy} = 951.4$

$$\alpha_{xx} = -1628$$

$$\alpha_{xy} = \alpha_{yx} = -5226$$

$$\alpha_{yy} = -1344$$

Emittance and Damping Time vs Momentum

< 17 ▶

TODO for future versions...

- More quadrupoles in all the *IRs/straights* are needed
 - Provides enough parameters to vary to meet the constraints
 - Some quadrupoles need to be lengthened $(18\,{\rm GeV})$
- Phase changes in *IRs/straights* to improve momentum aperture
- Additional work on the geometry (Ring fits in tunnel):
 - Additional dipoles due to the cryo-chambers in IP12 and IP4
 - Push IP2 to the tunnel wall due to the hadron cooling system
 - Preserve the Blue ring
- Add the super-bends
- Add BPMs and orbit correctors
 - There is 0.77 m space available in the Arcs. If this can be reduced the dipole length can be increased