eRHIC IR Design Meeting

Draft Minutes for Friday, March 6, 2020

Agenda

1	Requirements document for lattice parameters—Q. Wu	1
2	Update on low- Q^2 tagger—J. Adam	1
3	Electron forward lattice—J.S. Berg	2
4	All other business	2
5	Draft agenda for Friday, March 13, 2020 from 2:30 to 3:30 p.m.	2

1 Requirements document for lattice parameters—Q. Wu

Title: "electron Crab Cavity Related Lattice Parameters" File: 20200212_CrabCavity_eSRLatticePara.docx

	Limitation
Beta function	$110\mathrm{m} < \beta_c < 200\mathrm{m}$
Curly H	$\mathbf{H} < 2.0\mathrm{m}$
Dispersion	$D < 0.5\mathrm{m}$
Dispersion derivative	D' < 0.1
Phase advance	$87.5^{\circ} \leq \varphi_c \leq 92.5^{\circ}$

Table 1: From requirements document referenced above.

- 1. J.S. Berg: What is the effective region of the crab cavity (for the purpose of the beta function constraints)?
 - (a) Q. Wu: For electron crabs, should be around $30 \,\mathrm{cm}$ to $50 \,\mathrm{cm}$.
- 2. E. Aschenauer: Is there an upper limit on the beta function at the IP for the crab cavity to work?
 - (a) V. Ptitsyn: As long as quads between crab cavities and IP are unchanged, it shouldn't effect the crab cavities.

2 Update on low- Q^2 tagger—J. Adam

Title: "Low- Q^2 tagger" File: JA-Low_Q2_tagger_20200306.pdf

- 1. Current simulations assume a perfect vacuum.
- 2. $Q^2 = 2EE'(1 \cos(\theta_e))$ is a naive formula that neglects electron mass. The real equation gives a lower bound for physically possible Q^2 values of order 10^{-9} [slide 4].
- 3. Summary [slide 10]:
 - (a) Upper range of tagger acceptance is $Q^2 \sim 10^{-2}$ GeV.
 - (b) Confirmed by the model of quasi-real photoproduction and by Pythia6
 - (c) The upper limit is a result of B2eR (and the entire beamline) aperture, very unlikely to change.
 - (d) Lower limit is $Q^2 \lesssim 10^{-7}$ GeV, depends on the actual physics process.
 - (e) Achieved with the tagger placed 10 cm away from the axis of the beam.
 - (f) Working now on a realistic model of the tagger detector and incorporation of beam effects.

3 Electron forward lattice—J.S. Berg

Title: "IR Matches" File: JSBerg-200306.pdf

- 1. C. Montag: How wide is syn rad fan from dipole right before crab cavity?
 - (a) $4 \,\mathrm{mrad}$
 - (b) C. Montag: A 1 cm fan should be able to fit through a 10 cm (diameter) crab cavity aperture.

4 All other business

None

- 5 Draft agenda for Friday, March 13, 2020 from 2:30 to 3:30 p.m.
 - 1. Update on existing RHIC survey information—M. Llardo and G. McIntyre
 - 2. Update on beta function limitations and physics physics requirements—E. Aschenauer and V. Ptitsyn