Effect of 50cm Lattice Shift on FF Acceptances

Alex Jentsch

9/10/2020

Preliminaries

- I will compare the particle scan done for the Yellow Report to study the overall acceptances in the FF IR region.
 - Particle gun using protons (neutrons not shown).
 - Magnets set to top proton energy setting (275 GeV).
 - Proton momentum sampled in 0 < p < 275 GeV/c
 - Particles sampled symmetric in phi, and polar angle 0 < theta < 20 mrad.
- Three proton detectors for capturing protons with different scattering angles and momenta.
- I have NOT yet shifted detectors.

IR & Detector Layout

Comparisons – detector acceptance images

Comparisons - p_T , ϕ , heta

Original IR

50 cm shift

Comparisons - $p vs. \theta$

Generated minus Accepted

Original IR

Polar Angle, 0 [mrad]

200

150

100

Comparisons - $\theta vs.\phi$

Zoom into region of $x_L \leq 0.6$ and $0 < \theta < 6$ mrad

Comparisons – detector acceptance images

Comparisons - p_T , ϕ , heta

Original IR

50 cm shift

Comparisons - $p vs. \theta$

Comparisons - $\theta vs.\phi$

Takeaways

- The 50cm shift has only a small impact on the proton acceptance, particularly at the highest pt.
 - I can study this more carefully by isolating regions of phase space relevant to a particular subsystem.
- Neutrons (not shown here) see almost no change (marginal decrease in acceptance on one side of the aperture).
- It would be helpful to have an *official* BMAD version of the layout in my coordinate system (because of the physics event generators).
 - Hadron going in the positive z-direction, 25mrad crossing angle all in the hadron beam.
 - Feel free to email me for more details.