Quarkonium detection and physics with ECCE

Xinbai Li for ECCE Collaboration 27/10/21

Physics Opportunities with Heavy Quarkonia at the EIC

Xinbai Li

Outline

- Physics Opportunities for Heavy Quarknia at the EIC
- Detector Configuration of ECCE
- Tracking and electron identification capability
- The simulation of Quarkonia reconstruction at ECCE
- > The projection results for J/ψ photoproduction
- Summary and future plan

Physics Opportunities

- Production mechanism for quarkonia
 - ✓ Constrain the NRQCD matrix elements
 - ✓ Study the hadronization in nucleus
- > 3D tomography of gluon distribution
 - ✓ gluon nPDF (z direction)
 - ✓ Transverse distribution of gluon (x-y direction)
- Near threshold photoproduction
 - ✓ 2g, 3g exchange
 - \checkmark The proton mass decomposition

Physics Opportunities with Heavy Quarkonia at the EIC

Detector Configuration

Detector Configuration (June Concept)——Tracking

- 1st simulation camping ECCE tracking detector consists of
 - MAPS based silicon vertex/tracking layers/planes.
 - MPGD/ μ Rwell gas tracker.
 - LGAD based outer layers.

Tracking performance at ECCE

EMCal +Tracking

- ✓ The energy deposition => E/p cut
- ✓ The transverse profile of the showers
- The position resolution

Cherenkov + TOF

Physics Opportunities with Heavy Quarkonia at the EIC

- h-endcap: dRICH with two radiators (gas + aerogel)
 - π/K separation up to ~50 GeV/c e/ π separation up to ~15 GeV/c
- e-endcap: compact aerogel mRICH π/K separation up to ~10 GeV/c e/π separation up to ~2 GeV/c
- barrel: compact high-performance DIRC π/K separation up to ~6-7 GeV/c e/π separation up to ~1.2 GeV/c
- LGAD based TOF: cover lower momenta down to ~0.2 GeV/c

HPDIRC

J/ψ Reconstruction

generator: pythia6 (eRHIC tuned) Full Geant simulation (fun4All) events: ~20million

J/ψ Reconstruction

Resolution and significance in <u>different rapidity regions</u>

Production mechanism of quarkonia

Direct, Resolve and Exclusive process

Event feature of near threshold J/ψ photoproduction

- ✓ The scattered proton or nucleus escape undetected down the beampipe at small scattering angles
- ✓ The majority of scattered electron escape undetected (Veto on Q² > 1(GeV/c²)²
- ✓ No other event activity expect the electron-position pair from J/ψ decay

The trigger efficiency is sufficient high, assumed to be 1

Efficiency and S/B correction

The theoretical setup for projection (eSTARLight)

$$\sigma(eA \to eAV) = \int \frac{dW}{W} \int dk \int dQ^2 \frac{d^2 N_{\gamma}}{dk \, dQ^2} \sigma_{\gamma^*A \to VA}(W, Q^2)$$
$$\frac{d^2 N_{\gamma}}{dk \, dQ^2} = \frac{\alpha}{\pi k Q^2} \left[1 - \frac{k}{Ee} + \frac{k^2}{2E_e^2} - \left(1 - \frac{k}{Ee}\right) \left| \frac{Q_{\min}^2}{Q^2} \right| \right]$$

$$\sigma_{\gamma^*A \to VA}(W, Q^2) = f(M_V)\sigma(W, Q^2 = 0) \left(\frac{M_V^2}{M_V^2 + Q^2}\right)^n \qquad n = c_1 + c_2 \left(Q^2 + M_V^2\right),$$
$$\sigma(W, Q^2 = 0) = \int_{t_{\min}}^{\infty} dt \frac{d\sigma(\gamma A \to VA)}{dt} \Big|_{t=0} F(t)|^2$$
Can be related to the cross section for $\sigma(\gamma + p \to V + p)$

eSTARLight: Michael Lomnitz and Spencer Klein, Phys. Rev. C 99 (2019) 015203

Wangmei Zha etal, Phys. Rev. C **97** (2018) 044910

Physics Opportunities with Heavy Quarkonia at the EIC

Xinbai Li

Two improvements for eSTARLight

Minimum momentum transfer

 $t_{\rm min} = (M_V^2/2k)^2$ Approximation

Parametrization for cross section input

Z. Cao etal., Chin. Phys. C43 (2019) 064103

The theoretical input for ep and eAu

The projected statistics

The gluon nPDF projection

If there is no shadowing $d\sigma_{\gamma A}/dt|_{t=0} = d\sigma_{\gamma p}/dt|_{t=0} \times A^2$ Some remarks $\rho(x) = \tan\left(\frac{\pi \, \Delta_{\mathbf{I\!P}}}{2}\right)$ $R_{\text{skewed}} = \frac{2^{2\Delta_{\mathbf{IP}}+3}}{\sqrt{\pi}} \cdot \frac{\Gamma(\Delta_{\mathbf{IP}}+5/2)}{\Gamma(\Delta_{\mathbf{IP}}+4)}$ $K = (1 + \rho^2(x)) \cdot R_{\text{skewed}}^2$

Assume the correction is the same for p and Au

The t distribution projection

The momentum resolution would wipe out the diffraction dips.

The near threshold production mechnasim

Phys. Rev. Lett. 123, 072001(2019)

 $\frac{d\sigma}{dt} = \mathcal{N}_{2g} v \frac{(1-x)^2}{R^2 M^2} F_{2g}^2(t) \left(s - m_p^2\right)^2$

$$\frac{d\sigma}{dt} = \mathcal{N}_{3g} v \frac{(1-x)^0}{R^4 \mathcal{M}^4} F_{3g}^2(t) \left(s - m_p^2\right)^2$$

Physics Letters B 498 (2001) 23-28

The trace anomaly parameter projection

$$M_q = \frac{3}{4} \left(a - \frac{b}{1 + \gamma_m} \right) M_N,$$
$$M_g = \frac{3}{4} (1 - a) M_N,$$
$$M_m = \frac{4 + \gamma_m}{4(1 + \gamma_m)} b M_N,$$
$$M_a = \frac{1}{4} (1 - b) M_N,$$

Eur. Phys. J. C (2020) 80:507

Extract the QCD trace anomaly parameter b

Xinbai Li

Summary and future plan

Summary

- Excelent electron identification probability at ECCE
- \succ Reasonable mass resolution for J/ ψ reconstruction
- > High statitics to study the photoproduction of J/ψ

Future plan

>The projection results from full Geant simulation

>The projection results for Quarkonia production mechanism

J/ψ detection (For Page15 S/B)

a forward light cone variables can be used to see scattering beam e- influence $x_{+} = \frac{b_{0} + (-b_{z})}{a_{0} + (-a_{z})}$ (cause beam e- moves along negative z axis), b is beam e-.

26

J/ψ detection (For Page15 S/B)

