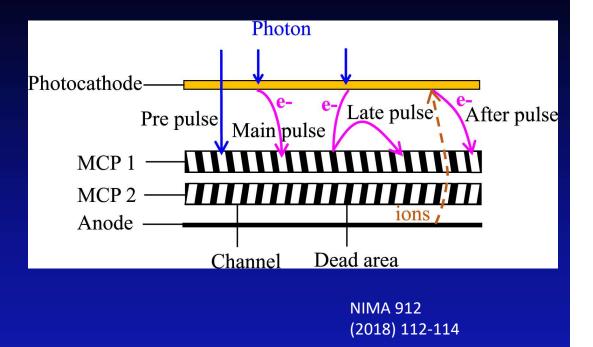
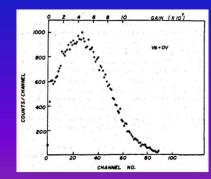


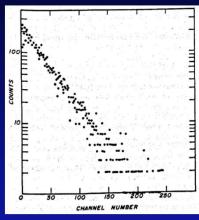
Micro-Channel Plate Photon Detectors


Thierry Gys (CERN/PH-DT)

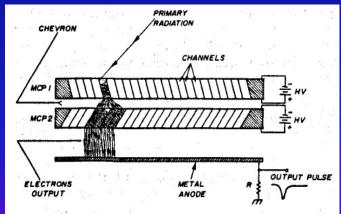
- Previous seminar given on 7th February 2014
 - <u>https://indico.cern.ch/event/288433/</u>
 - History From large-size single channels to micro-channel plates Gen II image intensifiers Applications in scintillating fibre tracker detectors
- Today's seminar
 - Basic principles of operation
 - Re-discovering the MCP-PMT for fast timing
 - Specific features and effects
 - Applications in time-of-flight and particle identification detectors
 - Various layouts
 - Related recent developments and improvements
 - Lifetime
 - Collection efficiency
 - Surface coverage
 - Rate capability
 - MCP detectors in multi-photon regime
 - For time-of-flight and time reference detectors
- Conclusions and perspectives
- This overview is not exhaustive, many other activities are on-going !!!

- Vacuum photon detector
 - Optical input window
 - Photocathode
 - Pair of micro-channel plates
 - Bulk material: Pb glass
 - Resistivity: bias supply
 - Secondary Emission (SE): continuous amplification
 - Gain per plate: typ. 10³
 - Chevron configuration
 - Reduce Ion Feed-Back (IFB)
 - Anode
 - Various segmentations and types
 - AC/DC coupling
- Contributions to signal
 - Pre-pulse: no photon conversion in photocathode, SE in micro-channel, lower amplitude
 - Main pulse: photon conversion in photocathode, SE in micro-channel, nominal amplitude
 - Late pulse: after photoelectron backscattering and re-entry in micro-channel, ~nom. amplitude
 - After pulse (Ion Feed-Back IFB): desorption/ionization effects
 - Degradation of gain and quantum efficiency

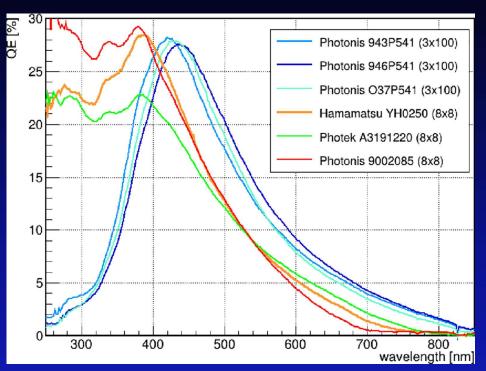




Micro-channel plates

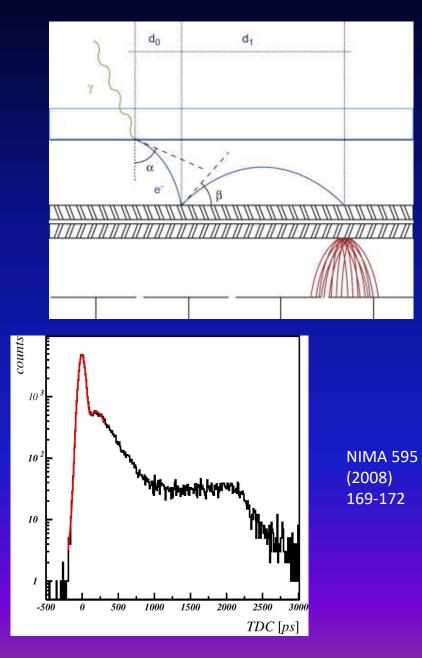

• Geometry

- Pore d: ~6-25μm
- Channel L: ~400-1000μm
- Aspect ratio α =L/d: ~40-100, defines gain
- Open Area Ratio (OAR): ~55-65%
- Straight channel
 - Typical gain: 10³-10⁴
 - IFB limited
 - Negative exponential Pulse Height Spectrum (PHS)
- Curved channel
 - Space-charge limited dynamic equilibrium
 - Quasi Gaussian PHS
 - Difficult to bend if small-sized
- Chevron configuration
 - Typical overall gain: 10⁶-10⁷
 - Gain \div d for fixed V/ α
 - PHS
 - Gain fluctuations dominated
 by δ₁ (first impact)

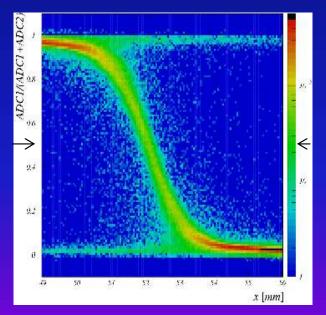


NIM 162 (1979) 587-601

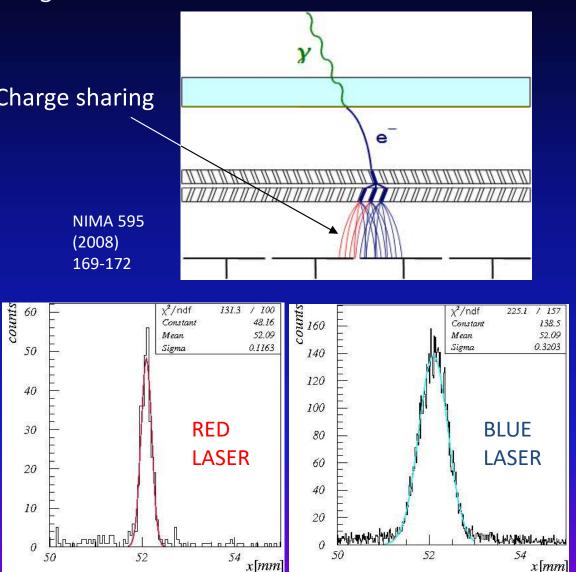
- Some interesting features
 - Square shapes
 - Better overall coverage
 - Single-photon sensitive
 - Low noise: DCR O(kHz/cm²)
 - High gain: 10⁶-10⁷
 - Collection Efficiency (CE) ~60%
 - Compact, high E field
 - Works in large (axial) magnetic fields
 - Small Transit Time Spread (TTS): typ. 20-30ps (for Single Photo-Electron – SPE)
 - Good rate capability: up to 1MHz/cm² (the smaller d the better)
 - Position-sensitive
 - Appropriate anode segmentation



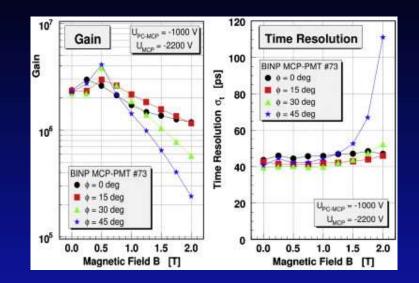
NIMA 1049 (2023) 168047

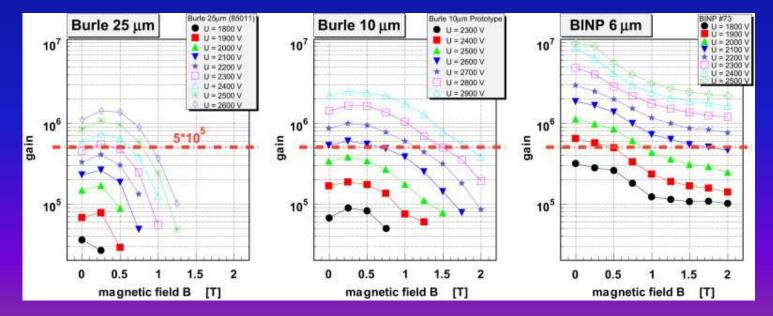

- Photo-electron back-scattering
 - Tails in timing and spatial distributions
 - Spatially
 - Worst case: elastic scattering @ 45°
 - Range: twice PC/MCPin gap
 - Timing
 - Worst case: elastic scattering @ 90°
 - Range: twice transit time PC/MCPin

Typical single photon timing distribution with narrow main peak ($\sigma \sim 40 \text{ ps}$) and contribution from photo-electron back-scattering.

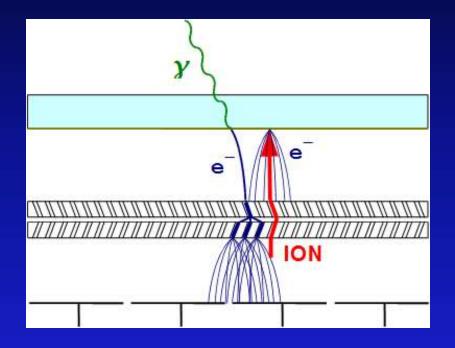


- Secondary electrons spread when traveling from MCPout to anode
- May hit more than one anode pad \rightarrow Charge sharing
- May improve spatial resolution but degrade time resolution


Fraction of the charge detected by left pad as a function of light spot position (red laser)

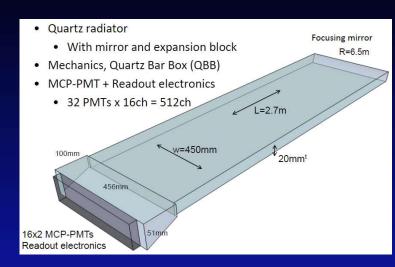

Slices at equal charge sharing for red and blue laser at pad boundary Resolution limited by photoelectron energy

- Narrow amplification channel and proximity focusing electron optics allow operation in magnetic field (~ axial direction)
- Amplification depends on magnetic field strength and direction
- Effects of charge sharing and photoelectron backscattering on position resolution are strongly reduced while effects on timing remain


NIMA 595 (2008) 173-176

CERN Detector Seminar - 28 Apr. '23

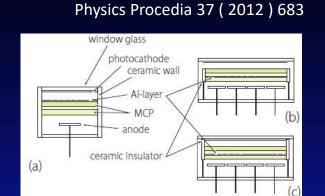
- During the amplification process
 - Atoms of residual gas get ionized and/or desorbed
 - Travel back towards the photocathode and produce secondary pulse
- Ion bombardment damages the photocathode, reducing QE
- Atoms may react with and degrade the photocathode
- Overall gain reduction also seen

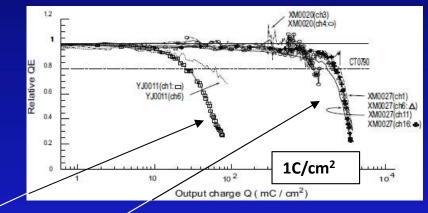


- Conventional MCP-PMTs
 - Degradation observed @ a few 100mC/cm²
- Possible strategies
 - Improve vacuum quality
 - Improve MCP scrubbing
 - Make more robust photocathodes
 - Implement ion barrier film
 - 5-10nm Al₂O₃
 - On 1st MCPin with 40% reduction of collection efficiency
 - Between MCPs to recover initial collection efficiency
 - Seal anode region from PC region
 - Investigate alternative MCP materials
 - Borosilicate, Alumina, Silicon
 - Investigate new thin-film technologies
 - Atomic Layer Deposition (ALD)

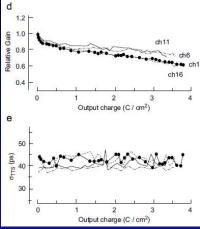
Belle II iTOP

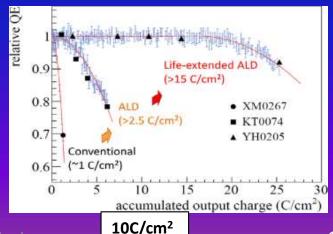
- TOP (Time-Of-Propagation)
 - Counter based on DIRC concept (BaBar)
 - Using linear array of MCP-PMTs to measure x coordinate and time of propagation (length of photon path)
 - Chromaticity dispersion 100ps
 - Evolved towards iTOP
 with focussing mirror and y coordinate


NIMA 766 (2014) 5-8

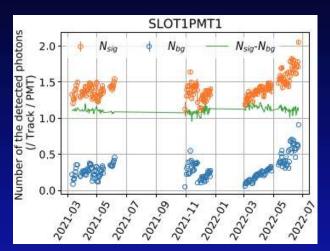


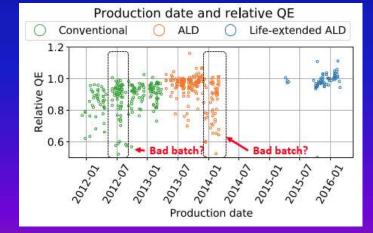
R. Okubo RICH 2022

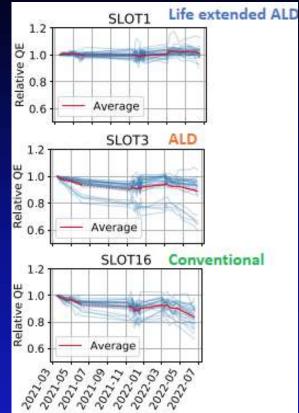



- Requirements
 - Integrated Anode Charge (IAC):
 1.2-2.4C/cm²/50ab⁻¹
 (5×10⁵ gain)
 - Lifetime: 0.8QE
 - Enhanced multi-alkali (>28% QE at peak)
 - TTS: <50ps for TOP</p>
- Specifications
 - Pore Ø: 10μm
 - Bias angle: 13°
 - Thickness: 400μm
 - Layers: 2
 - Al protection layer on 2nd MCP
 - + ceramic insulator (2011)
 - + ALD (2013)
 - + life-extended ALD (2015)
 - Anode channels: 4×4
 - Active area: 64%

NIMA 629 (2011) 111-117





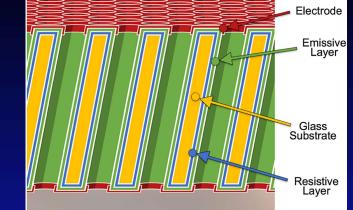

NIMA 936 (2019) 556-557

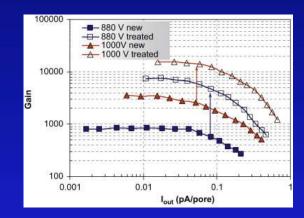
- Time period
 - Mar 2021 Jun 2022
 - Rate/PMT: 2->5MHz
 - IAC: 0.20-0.35C/cm²
- QE estimate
 - Signal: isolated muon track
 - Bkd: no muon track
- Possible QE degradation ?
 - Production batch
 - Background rejection
 - Gain drop vs efficiency
 - Noise
 - T

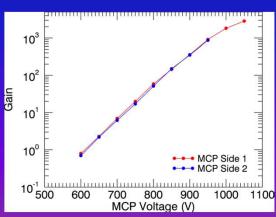
Atomic layer deposition (ALD)

J. Vac. Sci. Technol. A 34,

01A128 (2016)

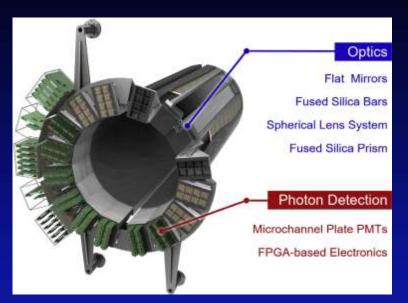

- Initiated by the LAPPD Collaboration
- Three-step deposition process
 - Resistive layer
 - Al₂O₃:Mo, Al₂O₃:W (50nm)
 - R typ. 10 to 120 $M\Omega$
 - − Too low $R \rightarrow$ thermal runaway
 - Emissive layer
 - Al₂O₃, MgO (10nm)
 - Secondary Electron Yield (SEY) 1-6, 3-7 resp. (SEY 2.5-3.5 for Pb glass)
 - Electrode
 - NiCr 80/20 (200nm)
- Optimization of MCP resistance and SEY
 - For a given gain, lower operating voltage
- Allow use of insulating materials other than Pb glass
 - Glass micro-capillary arrays



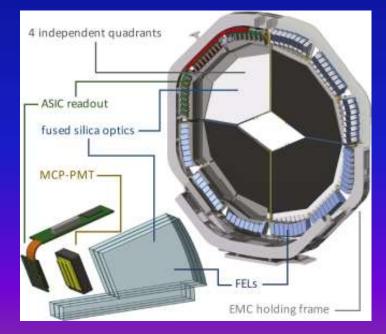

NIMA 912 (2018) 75–77

NIMA 607

(2009) 81-84

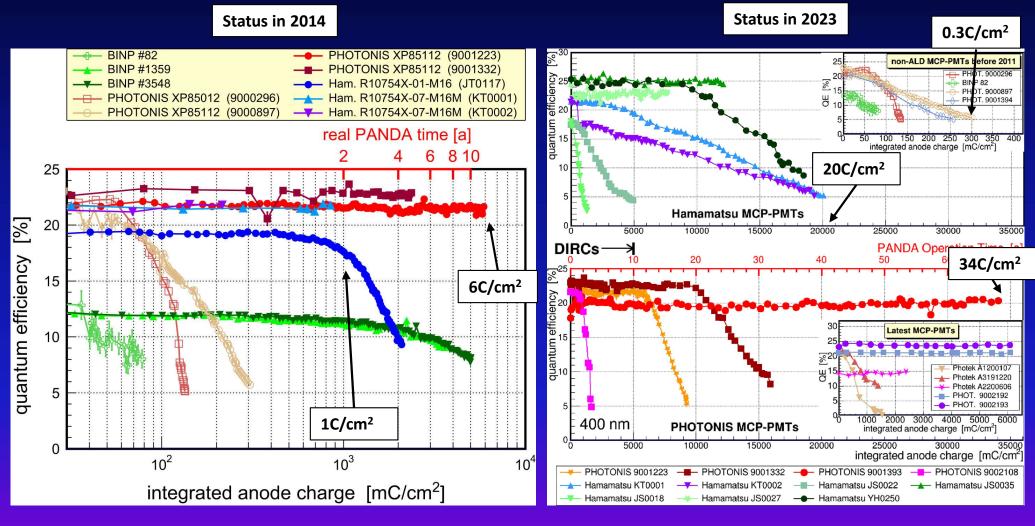


CERN Detector Seminar - 28 Apr. '23



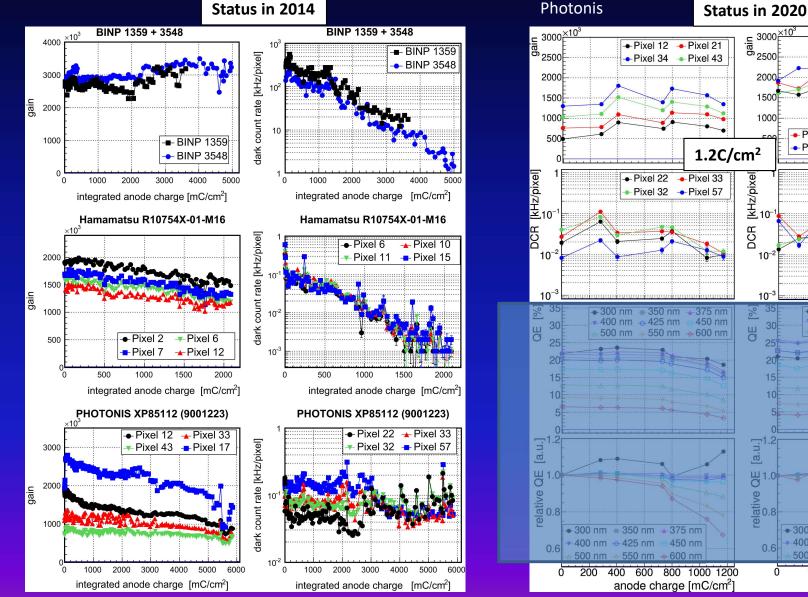
- Barrel DIRC
 - Integrated charge ~ $5C/cm^2$ (10^6 gain)
 - Pixel rate ~ 200kHz (~ 600kHz/cm²)
 - B field up to 1.5T
 - Segmentation 8×8 on 2" sq. tube
 - Time resolution ~ 100ps
 - 1 MeV n-equivalent fluence
 >2×10¹¹ neq/cm²

- Endcap Disc DIRC
 - Integrated charge ~ $7-8C/cm^2$ (10⁶ gain)
 - Rate ~ 2MHz/cm²
 - B field up to 1.0T
 - Segmentation 3×100 on 2" sq. tube
 - Time resolution ~ 100ps
 - 1 MeV n-equivalent fluence
 >2.10¹¹ neq/cm²



NIMA 952 (2020) 161790

- Significant improvement for ALD-processed MCPs
 - Best devices now reach 35C/cm²



NIMA 766 (2014) 138-144

NIMA 1049 (2023) 168047

Moderate gain changes and decrease of DCR •

Status in 2014

NIMA 958 (2020) 162357

NIMA 766 (2014) 138-144

4000

Hamamatsu

4C/cm²

450 nm

3000×10

usb_{2500⊦}

200

150

1000

[kHz/pixel]

DCR

10

10

B

[a.u.]

B.

relative (

Pixel 30 - Pixel 51

300 nm

400 nm 🖶 425 nm

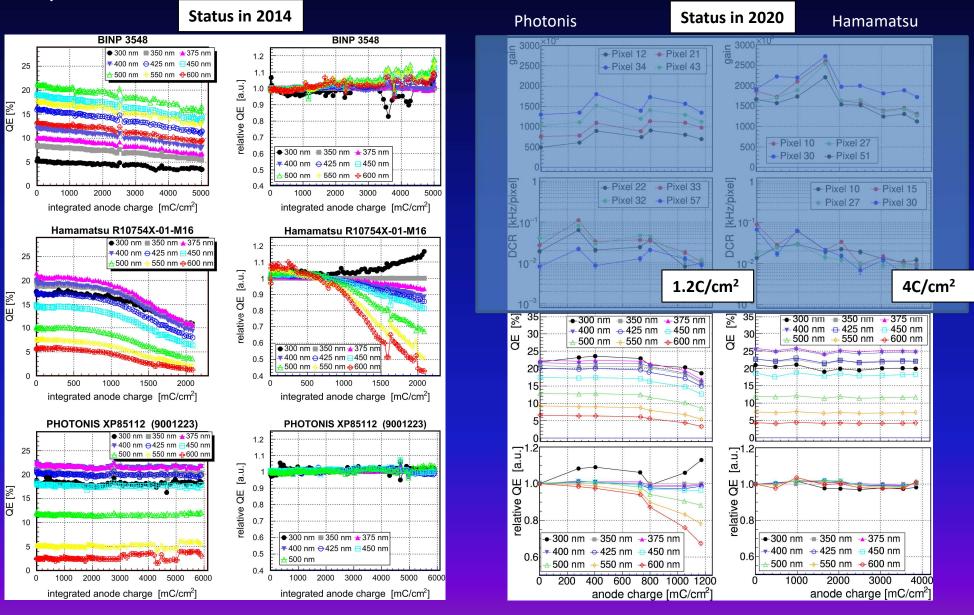
500 nm 🛶 550 nm

• 300 nm 🖷 350 nm 🔺 375 nm

400 nm 👴 425 nm 👘 450 nm

500 nm - 550 nm - 600 nm

2000

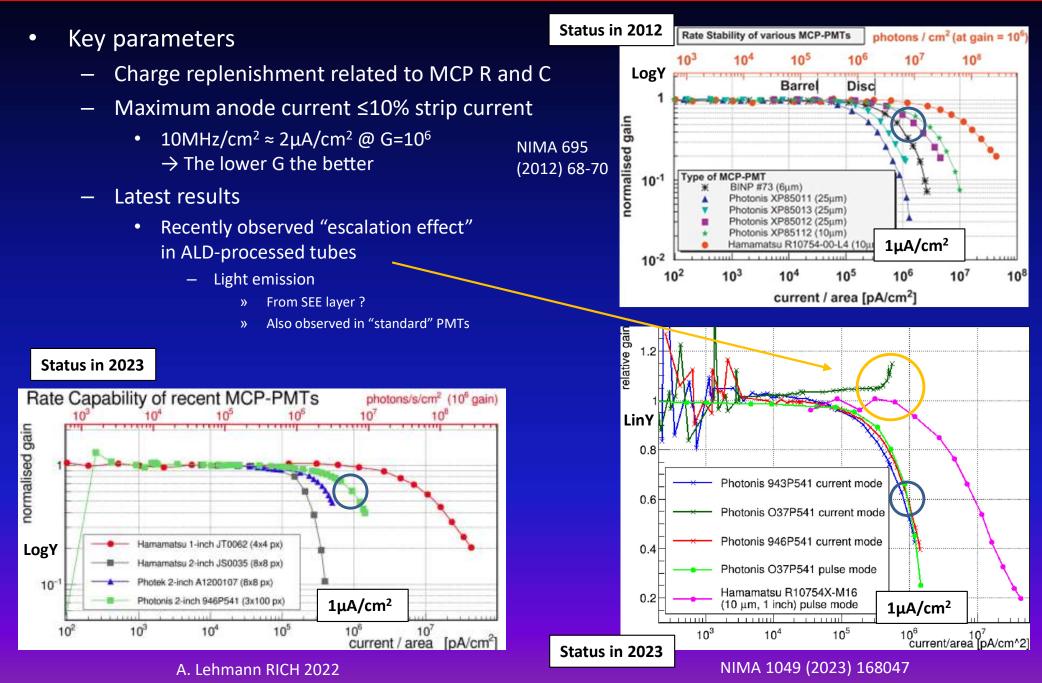

1000

3000

anode charge [mC/cm²]

• Improved trends

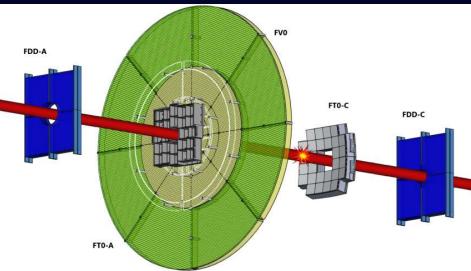
- Micro-channel plate photon detectors

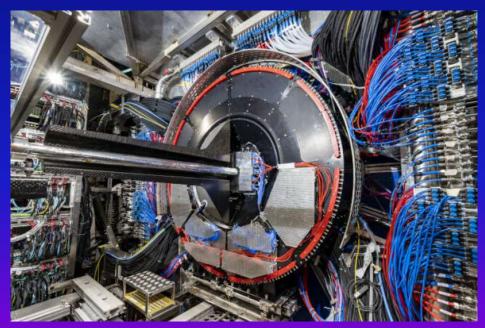

NIMA 958 (2020) 162357

CERN Detector Seminar - 28 Apr. '23

NIMA 766 (2014) 138-144

Panda photon detectors R&D – evolution of rate capability


ALICE Fast Interaction Trigger


• Consists of 3 detectors

- Fast Cherenkov arrays FTO-A and FTO-C
 - 208 optically-separated quartz radiators
 - Expected time resolution for high-multiplicity heavy-ion collisions ~ 7 ps
- Scintillator disk FV0
- Forward Diffractive Detectors FDD

• Purpose

- Luminosity monitoring
- Trigger generator
- Online vertex determination
- Collision time measurement
 needed for PID
- Forward multiplicity counter
- Installed in June 2021

https://ep-news.web.cern.ch/content/newalice-fast-interaction-trigger

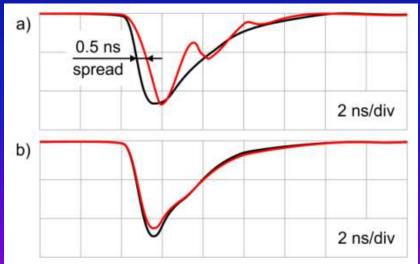
CERN Detector Seminar - 28 Apr. '23

PoS(ICHEP2020)779,814

ALICE Fast Interaction Trigger – Photosensors

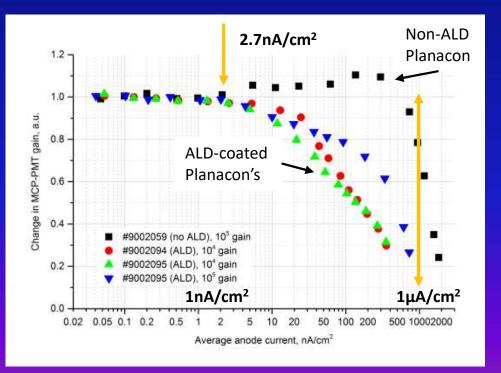
(2020)

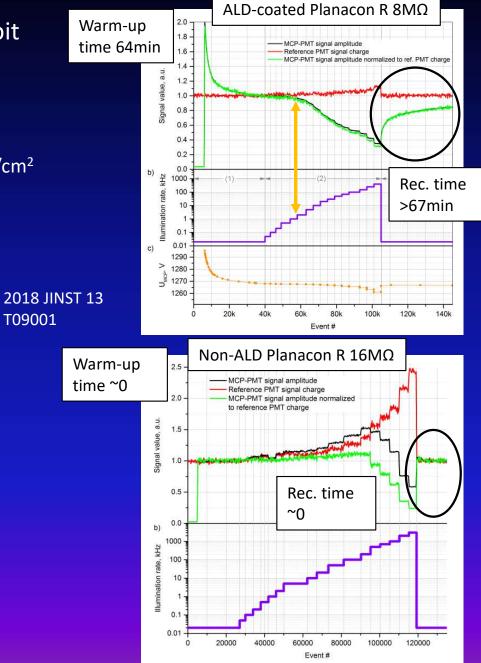
161920


FT0 sensors ٠

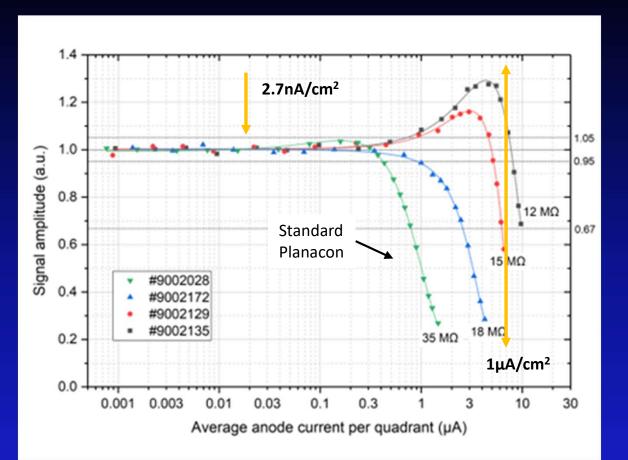
- 24(A) and 28(C) 8x8 2" Planacon MCP-PMTs
 - Each sensor coupled to 4 guartz radiators
 - Anode pads grouped in 4 sectors
- IAC: >0.6C/cm² •
- Average Anode Current (AAC): • up to 250 nA/cm^2 (7µA for 2" PMTs)
 - Equivalent illumination rate: up to ~100MHz/cm² @ G=1.5×10⁴
- B field: up to 0.5T •
- Custom back plane •
 - No common connection at the MCP output •
 - **Reduced cross-talk** •
 - Increased dynamic range
- Low operating gain 1.5×10⁴
- Achieved intrinsic time resolution: 13ps/quadrant
- Low R devices preferred •
 - Improve rate capability
 - **Over-linearity**
 - Heat dissipation

2021 JINST 16 P12032

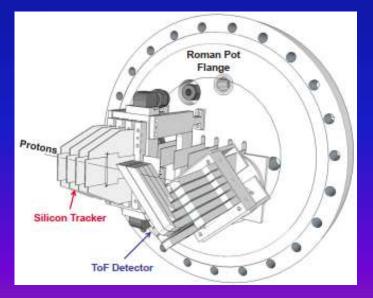




ALICE Fast Interaction Trigger – Saturation and recovery

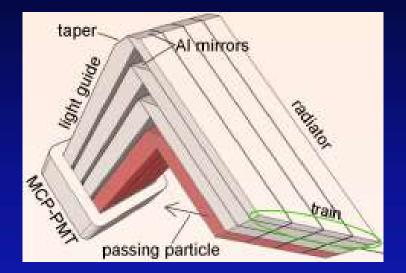

- Previously-developed ALD-coated MCPs exhibit
 - Lower saturation current levels
 - Longer gain recovery times
 - Gain decrease
 - Already seen @ 1kHz illumination rate ≡ 2.7nA/cm² (400kHz illumination rate ≡ 1.1µA/cm²)
 - Strip current ~6.6µA/cm²
 - Expected gain saturation to start
 @ 10%×6.6µA/cm² = 660nA/cm²

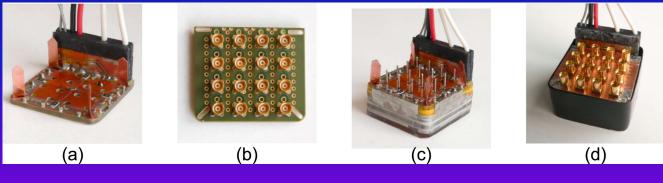
- Standard tubes:
 - MCP R: 30-70MΩ
 - Nominal AAC limit: 3μA
- Customized tubes:
 - MCP R: 12-22MΩ
 - Increased AAC limit: 10μA
 - Non-ALD
 - Specific back-plane wiring
- Lower R devices:
 - Improved rate capability
 - Over-linearity
 - Heat dissipation
 - For tube w. $R^{2}12M\Omega$:
 - AAC limits
 - +5%: ~0.6µA/quadrant
 - +29%: ~4.2µA/quadrant
 - (-33%): ~9.9μA/quadrant
 - Strip (stack) current: ~80µA
 - P ≈ 75mW


2021 JINST 16 P12032

- Stations
 - Located ~ 200m from IP1
 - Distant 2mm from LHC beam
 - Si pixel tracking planes (in two stations)
 - ToF quartz Cherenkov detectors (in far station only)
 - 16 L-shaped bars
 - Coupled to "out-of-vacuum" newly-developed MCP sensors through optical window
 - Easier environment for AFP operation
 - Easier access to electronics
- Purpose
 - Assign protons detected by AFP to individual collisions in IP1
 - Precise timing measurement determines vertex position to match
 - Reduces background in high pileup situations
 - Expected performance O(10ps)

https://cds.cern.ch/record/2755104 /files/ATL-FWD-SLIDE-2021-046.pdf

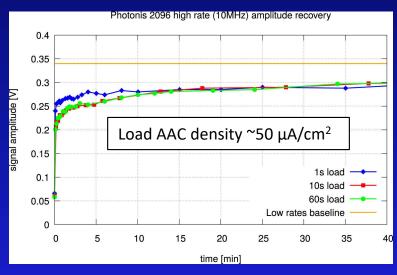


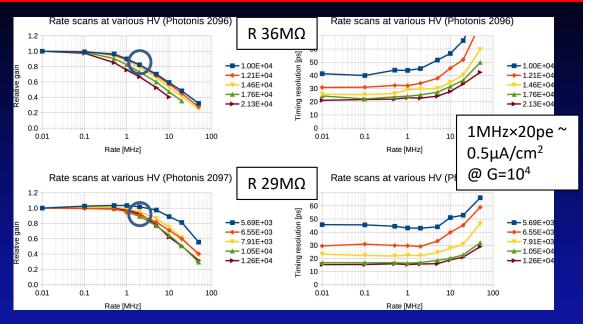


• AFP sensors

- 4×4 1" Mini-Planacon MCP-PMTs
 - Each sensor pixel coupled to one quartz radiator bar
 - 4 bars form a "train"
- IAC: 10C/cm²
- Rate: 20MHz per bar train
- Reduced MCP R
- Low operating gain ~ 2×10³
 - Expected light yield: 25pe/bar
 - MCP anode current density ~ 1µA/cm²
 - Additional amplification required
- Custom back plane
 - HF connectors
 - Reduced cross-talk

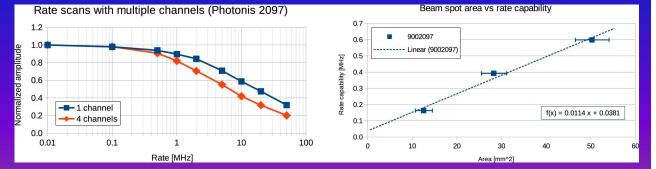
https://cds.cern.ch/record/2755104 /files/ATL-FWD-SLIDE-2021-046.pdf


NIMA 1041 (2022) 167330



ATLAS Forward Proton detectors – Photosensors – Previous models

- Achieved rate capability
 - Low R
 - \rightarrow better max. rate
 - \rightarrow increased "super-linearity"
 - Gain (current mode): 10⁴


• Saturation and recovery

NIMA 985 (2021) 164705

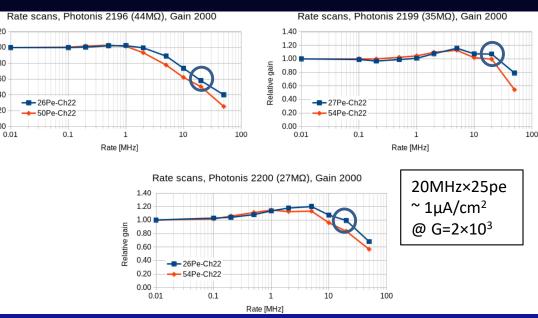
- Local vs global effects
 - Illumination conditions
 - 4 ch. vs 1 ch. at constant rate
 - Spot vs rate

ATLAS Forward Proton detectors – Photosensors – Latest models

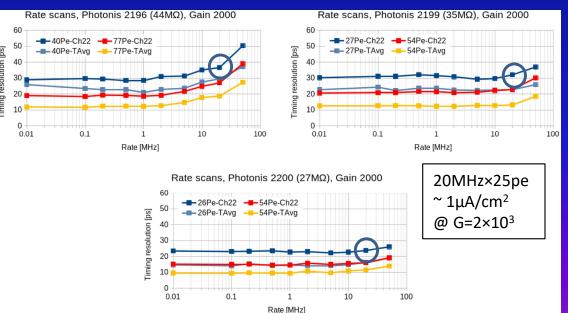
1.20

1.00

0.80

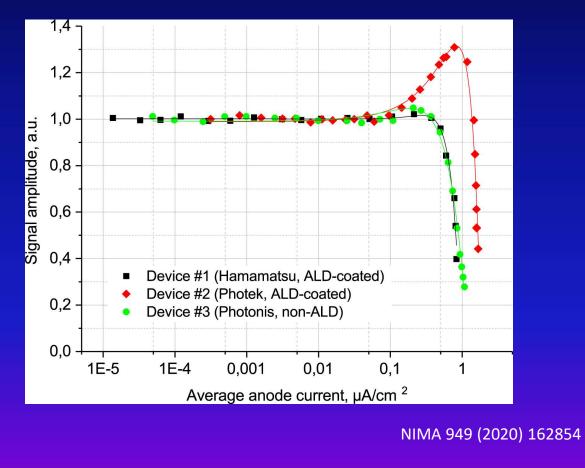

0.60

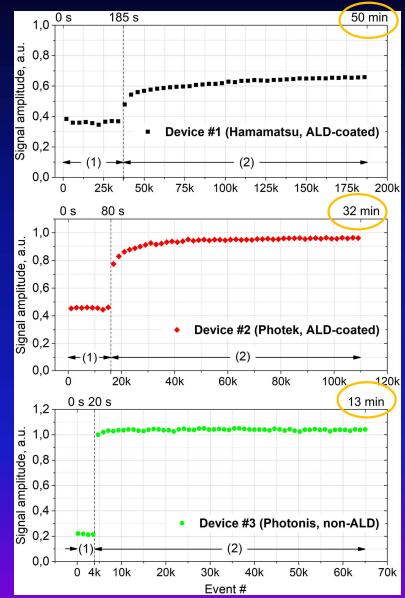
0.40


0.20

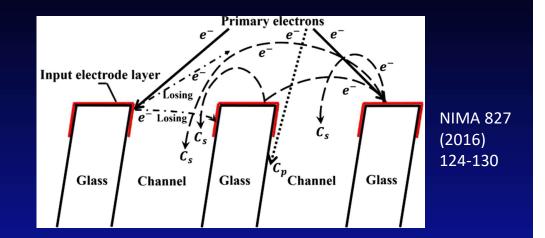
0.00

- Achieved rate capability
 - Low R
 - \rightarrow better max. rate
 - \rightarrow increased "super-linearity"
 - Gain (current mode): 2×10³
- Recovery now ~OK
 - Double ALD layer
 - Larger gain after saturation
 - +20% levelling off to +10%
 - Full recovery with HV off
- Achieved intrinsic time resolution
 - Recent lab measurements
 - Typ. 15-30ps/train
 - From previous beam tests
 - Raw signal
 - 20ps single channel
 - 14ps train combination
 - HPTDC
 - 20ps train combination




NIMA 1041 (2022) 167330

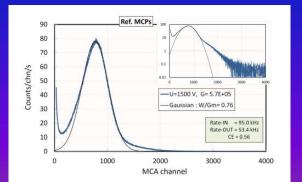
- ALD-coated MCPs exhibit
 - Lower saturation current levels
 - Longer gain recovery times
 - Saturation currents improved wrt previous FIT tests

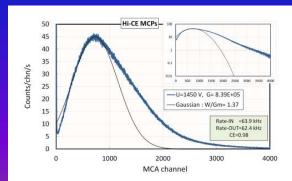


MCP – improving collection efficiency

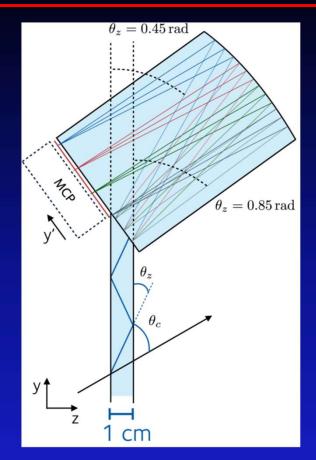
• Conventional CE

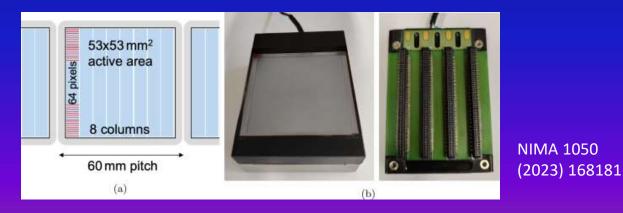
- Primary pes entering micro-channel ~ 55%
 - Non scattered pe
 - Main pulse in time distribution
- Primary pes hitting Ni-Cr electrode ~ 45%
 - A fraction backscattered
 - ~ 10% re-entering (another) micro-channel
 - Late pulse (tail) in time distribution

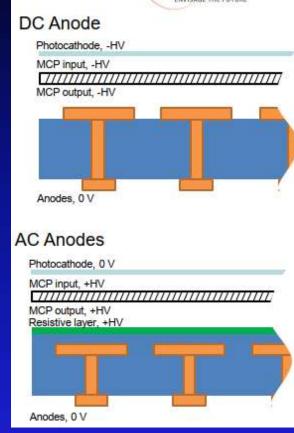



• Improved CE

- Deposit SE layer on top electrode
 - Resulting CE reaching 90-100%
 - \rightarrow Broadening of PHD
 - → Increased contribution of late pulse
- Overall time resolution (partially) regained by increasing V between PC and first MCP
 - \rightarrow Change voltage divider ratio


2018 JINST 13 C01047


- TORCH is a time-of-flight detector proposed for low-p particle ID in LHCb Upgrade 2
- MCP requirements
 - Segmentation 128x8
 (~0.4mmx6.4mm for a 2" tube)
 - For reconstruction of photon angle propagation with ~1mrad resolution
 - Typical gain $100fC (6x10^5)$
 - To extend lifetime and rate capability
 - TTS 50ps for single photons (including electronics)
 - Rate capability: \geq 10MHz/cm²
 - Lifetime: \geq 10C/cm² per year



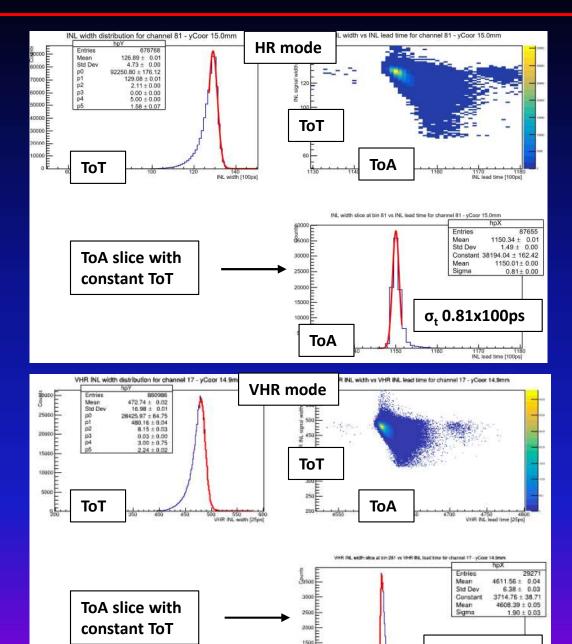
NIMA 1050 (2023) 168181

- Anode fine segmentation
 - DC coupling
 - Standard layout
 - AC coupling
 - Thin dielectric between charge collection and readout
 - Induced image charge footprint with tuneable size
 - Use charge sharing and centroiding to reconstruct photon position, recovering initially required segmentation
 - Photocathode operated at 0 V, no charge-up on input window
 - Reduced electronic channel count
 - Increased channel occupancy
 - Photek TORCH prototypes model PMT253
 - Segmentation: 64×8
 - ightarrow this AC coupling initially preferred



T. Conneely DIRC 2017

TORCH MCP R&D – Laboratory tests


- Pulsed laser light spot
 - Time width: 20ps FWHM
 - Spot size: ~20µm
 - Low intensity: < 0.1pe/trigger</p>
 - Use digital attenuator
 - Minimize ≥pes events
- Output charge cluster
 - σ(PSF): ~0.8mm
 - Typical cluster size: 3-4 pixels
 - Back-scattering "halo"
- Front-end electronics
 - NINO: 32 channel version
 - Single-level discrimination, ~30fC threshold
 - Time-over-threshold
 - HPTDC
 - HR Mode: 100ps time bin
 - VHR Mode: 25ps time bin

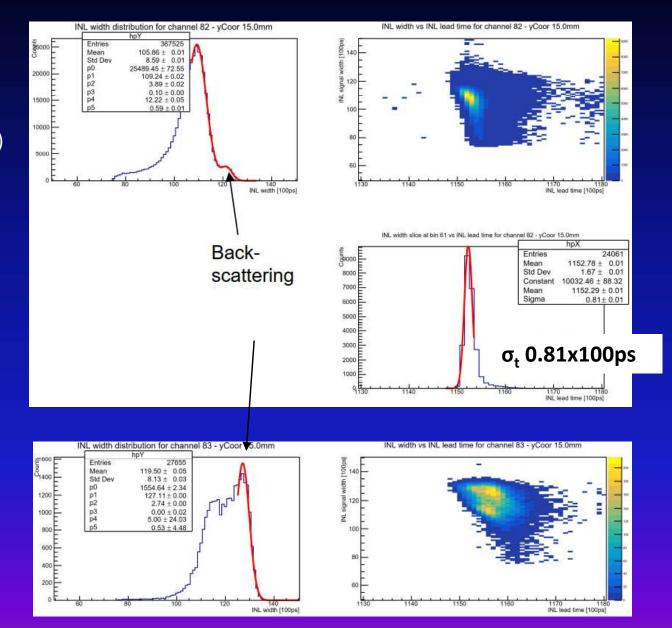
TORCH MCP R&D – Time resolution studies

- Central pixel
 - Achieved time resolution *per pixel*
 - σ_t ~80ps
 - HPTDC in High Resolution (HR) mode
 - Constant Time-over-Threshold (ToT), time-walk corrected

1000

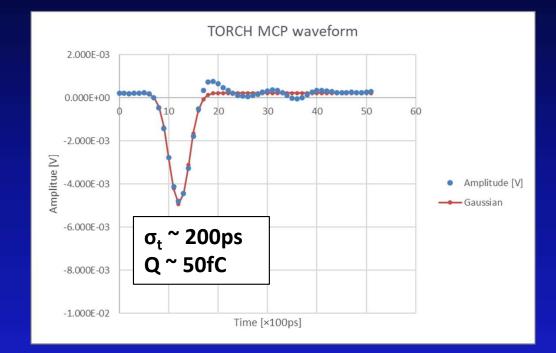
ToA

- σ_t ~50ps
- HPTDC in Very High Resolution (VHR) mode
- Constant Time-over-Threshold (ToT), time-walk corrected


CERN Detector Seminar - 28 Apr. '23

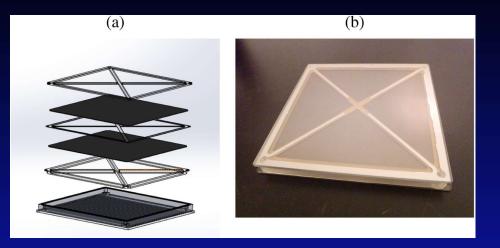
σ. 1.90x25ps

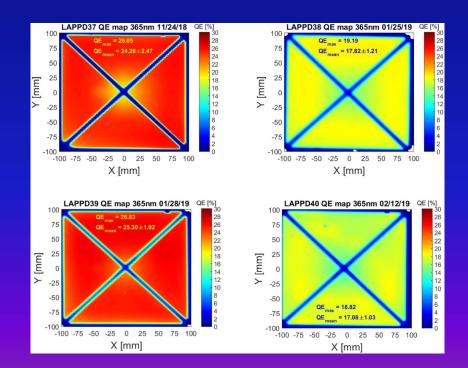
• Peripheral pixel


- Not scattered pe
 - Lower charge
 - Larger time walk
 - σt ~80ps (constant ampl.)
- Back-scattered pe
 - Larger charge
 - Small time walk
 - Delayed in time
- Most peripheral pixel
 - Not scattered pe
 - Even lower charge
 - Even larger time walk
 - Back-scattered pe
 - Larger charge
 - Small time walk
 - Delayed in time

- Coping with high occupancies
 - DC coupling
 - Reduced PSF and cluster size: ≥1 pixel
 - Anode finer segmentation
 - Reduce pixel size in both dimensions

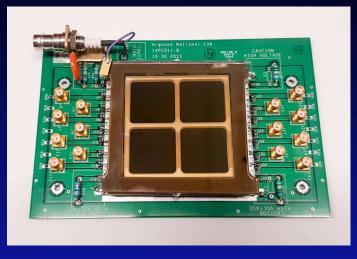
 → Increased channel count and density
 to preserve required spatial resolution
 - Segmentation R&D: 96x16
 - Illumination rate unchanged !
 - Smaller gain
 - G ~ 100fC (6×10⁵) already achieved with similar performance
 - Further reduction possible
 - Example of typical pulse (AC coupling)
 - In central pixel of a cluster
 - $\sigma_t(pixel) \simeq 200 ps$
 - Q(pixel) ~ 50fC
 - Max current 100µA, compatible with FastIC/FastRICH specs:
 - Dynamic range: 5 μ A to 5 mA (timing performance achieved for pulses >50 μ A)
 - Noise: <2 μA r.m.s.
 - CFD residual spread: ~ 114ps for 30µA-2mA current pulses



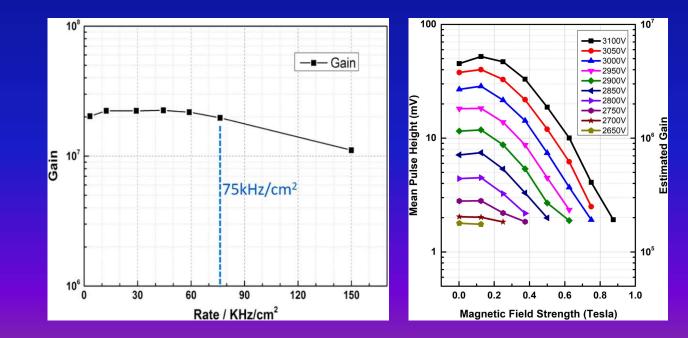

Large Area Picosecond Photo-Detector – LAPPD ©

- Design
 - Input window
 - Borosilicate or fused silica
 - Enclosure and spacers
 - Borosilicate glass
 - Chevron pair of MCPs
 - Glass microcapillary array with ALD
 - Internal microstrip anode
 - 20×20cm² overall size !
 - Cost effective
- Performance
 - Gain: up to 10^7
 - Dark count rate: 0.1-1kHz/cm² @ 6×10⁶ gain
 - QE: up to 25% (365nm)
 - TTS: ~ 50ps
 - Spatial resolution O(mm)

} electronics limited



NIMA 958 (2020) 162834



- Scale-model LAPPD
 - Motivation:
 - hpDIRC small-pixel MCPs or HRPPD
 - pfRICH (aerogel radiator) HRPPD
 - dRICH (aerogel + gas radiators) SiPMs (high B_{\perp} field)
 - 6×6cm² overall size
 - Rate capability
 - 120 GeV/c proton beam exposure
 - Expect ~100pes/p through 3mm-thick glass window
 - Gain $>10^7$ up to 150kHz/cm² beam flux
 - B field tests
- Next steps
 - HRPPD anode layouts:
 - AC: 24×24 pads
 - DC: 32×32 pads

NIMA A 912 (2018) 85-89

220

200

180

160

140

120

100E

80 60 40

20

26

27

Design ullet

- Internal resistive layer anode
- External 2D segmentation through AC coupling —
- Customizable anode pattern
 - Currently available •

MCP 850V, PC 100 V

PRELIMINARY

- External pad segmentation: 8×8
- Pad size/pitch: 24/25mm
- Similar performance as in Gen I —
- Finer pad/pixel segmentation under development

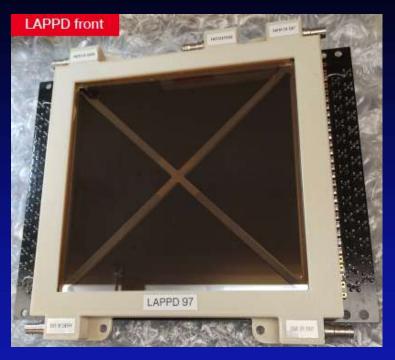
Mean Std Dev y²/rdf

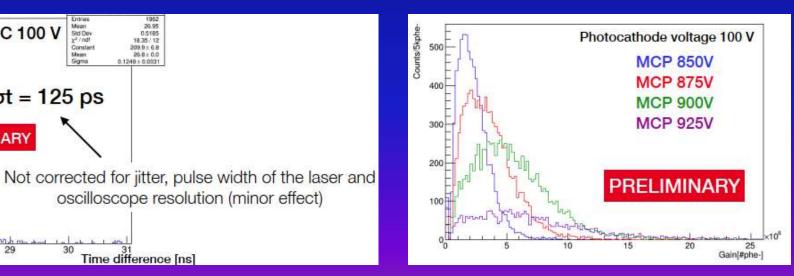
Constant Mean

σt = 125 ps

26.95

oscilloscope resolution (minor effect)

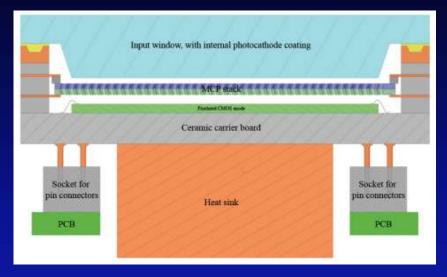

0.5185


18.35/12

209.9 = 6.8 26.8 ± 0.0

0.1249 1 0.0031

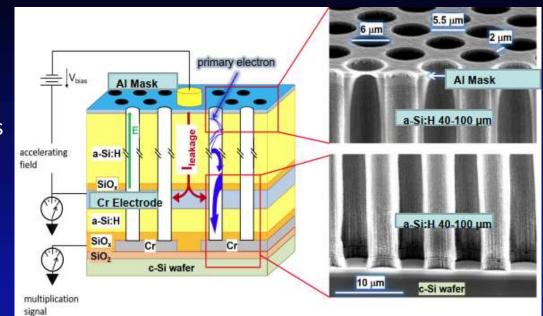
31 Time difference [ns]



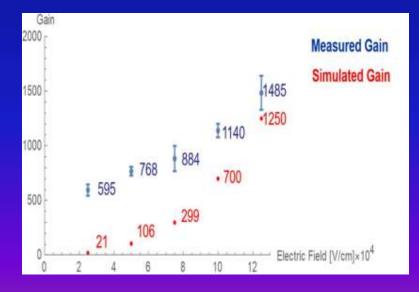
F. Oliva RICH 2022

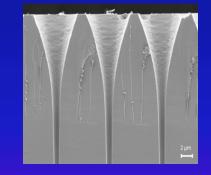
• Design

- Pixel readout ASIC encapsulated in vacuum
- No bump-bonded pixel detector
 - Use input bump-bond pad of FE channels
- High channel count
- Reduced number of output lines
- Compatibility with vacuum tube technology
- Heat dissipation
- Expected performance
 - Mostly defined from ASIC
 - Concept already demonstrated (Medipix2 2008, quad Timepix 2014)
 - Timepix4 specs (4DPhoton Project)
 - 448×512 square pixels (total area ~ 7cm2)
 - Pixel size: 55µm
 - Pixel ENC: 50-70e- rms
 - Discrimination level: 500-700e-
 - \rightarrow Low gain: typ. 10⁴ \rightarrow Increased MCP tube rate capability and lifetime.
 - TDC bin: 195ps
 - Power: ~5W
- Many achievements (see eg in Rad. Meas. 130 (2020) 106228)



Journal of Physics: Conference Series 2374 (2022) 012129

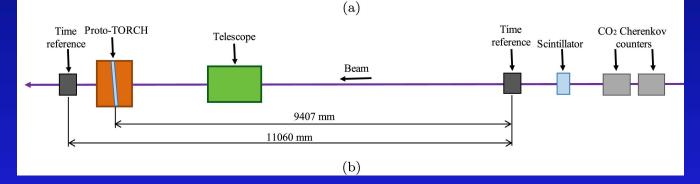



MCP based on amorphous silicon

- Design aspects
 - Vertical integration on readout electronics
 - Usage of c-Si microelectronics processes (cheap and flexible fabrication)
 - Funneled openings to increase CE
 - a-Si:H tunable resistivity (possibly faster charge replenishment)
 - Low Noise
 - High Spatial and Time Resolution
 - Radiation Hardness
 - Lower aspect ratio: 25-30
 - No channel tilt
 - No plate stacking
- Performance
 - Gain: up to 1500
 - σ_t : ~25ps (~7ps with amplifier)

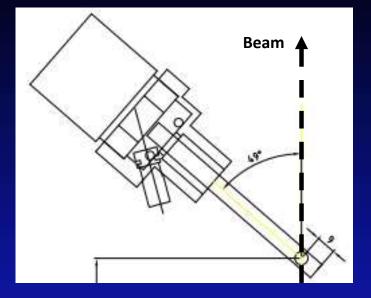
S. Frey NDIP 2022

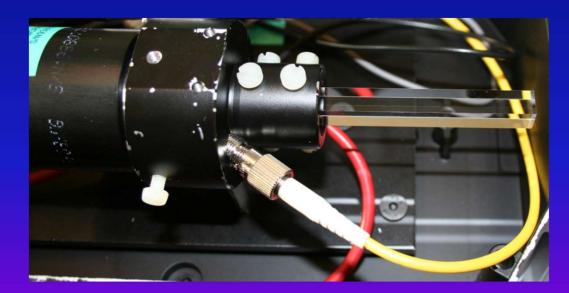
2021 NSS/MIC 1-3


- Purpose
 - Precise time reference or time-of-flight
- Possible configurations
 - Cherenkov light generation in separate solid radiator
 - Minimize material in particle beam
 - Preserve MCP tube lifetime
 - Cherenkov light generation in optical entrance window of tube
 - Optimize light yield and coupling
 - Material in beam
 - Possibly affecting tube lifetime

TORCH R&D – T1 & T2 time references in beam tests

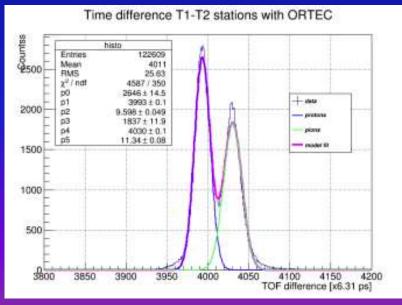
- Purpose
 - Provide upstream and downstream time references
 - Used with TORCH data for PID studies
 - Injected in HPTDC time reference channels
 - Used for beam momentum calibration
 - Injected in lab instrumentation modules
 - Re-used available material
 - MCP tubes
 - Glass radiators
 - Readout modules

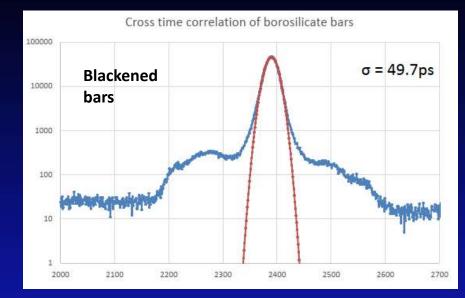


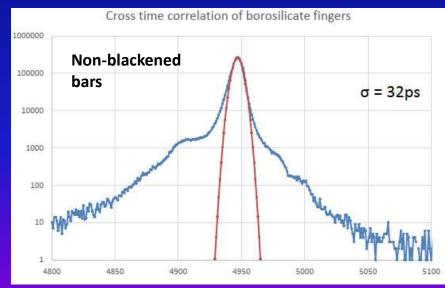


NIMA 1050 (2023) 168181

- Cherenkov radiator
 - Borosilicate bars: 8×8×100mm³
 - Tilted wrt beam
 - ~12mm borosilicate: ~0.09X₀
 - Associated crossed scintillators: 8×8×5mm³
 - Normal wrt beam
 - 5mm polystyrene: ~0.012X₀
 - No contact with MCP input window
- MCP tube
 - Photonis model PP0365G
 - PC-MCPin gap: 120μm
 - Active Ø: 18mm
 - Pore Ø: 6μm
 - Low gain: ~1-2×10⁵
 - σ_t : ~ 30-40ps
 - Not ALD processed
- Readout electronics
 - ORTEC CFD model 9327
 - ORTEC TAC 566 and MCA 926 (~6.25ps time bin)

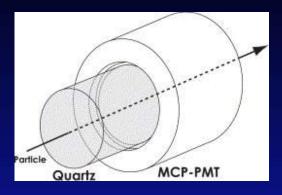




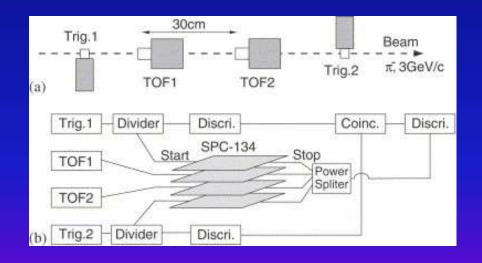

TORCH time reference system

- Performance
 - SPS calibration tests
 - 180 Gev/ c charged hadrons
 - Low intensity
 - Blackened bars (no side reflections)
 - Light yield: 1.6-1.7 pe
 - σ_t : 49.7ps (individual)
 - Non-blackened bars (w. side reflections)
 - Light yield: 8.5-8.7 pe
 - $-\sigma_t$: 32.0ps (individual)
 - PS time references and momentum calibration
 - 8GeV/c mixed p/pion beam

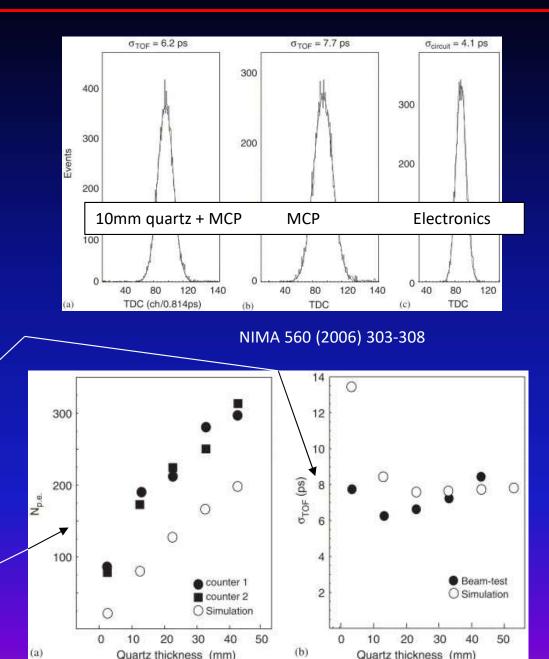
TORCH meeting 16.7.2015



TORCH beam test


status 1.9.2016

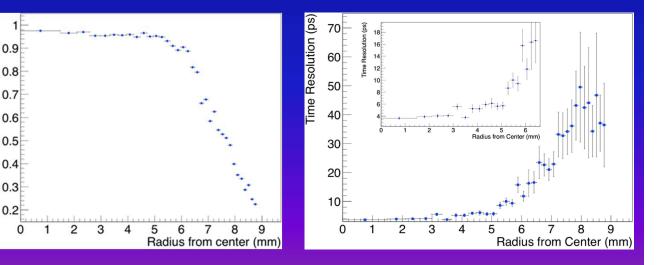
- Purpose
 - Time resolution studies of time-of-flight counters
- Test setup
 - Pion beam
 - p: 3GeV/c
 - Size: a few cm²
 - Intensity: ~ 10Hz
 - Scintillators
 - 5×5×10mm³
 - PMT readout
 - Trigger
 - 2 MCP-PMTs (+ Quartz rods)
- Readout
 - Time-correlated counting module
 - Channel resolution: 813fs
 - Time resolution: 4ps rms
 - Rep. rate: up to 200MHz



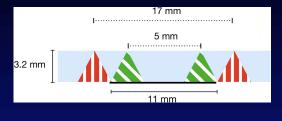
NIMA 560 (2006) 303-308

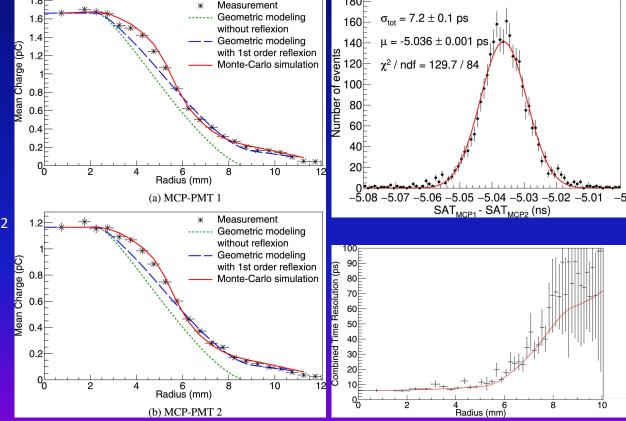


- Cherenkov radiator
 - Quartz rod
 - Variable thickness: 10-20-30-40mm
 - Quartz input window
 - Thickness: 3.0mm (?)
- MCP-PMTs
 - Hamamatsu model R3809U-50-11X
 - Active Ø: 11mm
 - Pore Ø: 6μm
 - Operating gain: ~ 1×10^{6}
 - σ_t: ~ 30ps (single photons G≥10⁶)
 - Not ALD processed
- Performance
 - $-\sigma_t$: ~ 6.5ps (combined)
 - Without quartz radiator
 - Corrected for electronics $\boldsymbol{\sigma}_t$
 - Discrepancy on N not understood



- Purpose
 - Provide ultra-precise T₀
 for time resolution studies
 of PICOSEC Micromegas detectors
- Test setup
 - SPS-H4 muon beam, up to 180GeV/c
 - Rate: a few 10⁵ per spill on scintillators (max. beam rate ~ 1kHz on MCP)
 - Tracking devices
 - Triple GEM
 - Extrapolated track precision: 40μm
 - Scintillators
 - PMT readout
 - Trigger
 - 2 MCP-PMTs
 - Time references
 - DUTs
 - PICOSEC Micromegas
 - Readout
 - Sampling oscilloscopes




PICOSEC-Micromegas R&D – MCP-PMT specs and performance

- Cherenkov radiator
 - Quartz input window
 - Thickness: 3.2mm ~ $0.03X_0$
- MCP-PMTs
 - Hamamatsu model R3809U-50
 - Active Ø: 11mm
 - Pore Ø: 6μm
 - Operating gain: ~ 8×10⁴
 - σ_t: ~ 25ps
 - ALD processed
- Performance
 - $-\sigma_t$: ~ 7.2ps (combined)
 - Illum. rate in spill: ~100kHz/cm²
 - 2 spills of ~5s per min.
 - IAC
 - Q(MIP) ~ 1.4pC
 - Per spill: ~ 7nC/cm²
 - Per 12 days of continuous beam tests: ~ 240µC/cm²

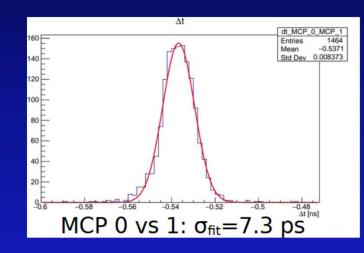
NIMA 960 (2020) 583-585

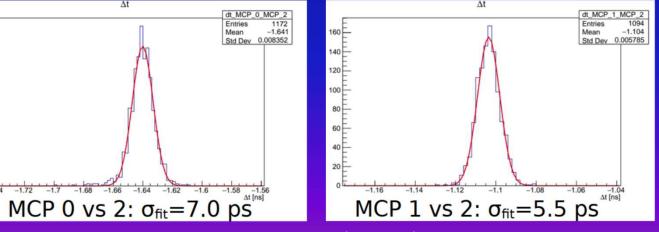
ATLAS HGTD and FASTPIX $R&D - T_0$ time reference from MCP-PMT

- Purpose
 - Provide ultra-precise T₀
 for time resolution studies
 of HGTD LGAD and FASTPIX detectors
- Test setup
 - SPS-H6 pion beam, 120GeV/c
 - Rate: a few 10⁶ per spill on scintillators (max. beam rate ~ 250kHz on MCP)
 - Tracking devices
 - Timepix3 telescope
 - Scintillators
 - PMT readout
 - Trigger
 - 3 MCP-PMTs
 - Time references and trigger
 - DUTs
 - LGAD/FASTPIX structures (fast OR trigger)
 - Readout
 - Sampling oscilloscopes

J. Braach et al., private comm.

- Cherenkov radiator
 - MCP-PMT input windows
 - Thickness: 3.2mm (HPK)
 - Thickness: 9.0mm (Photek)
- MCP-PMTs
 - MCP0/MCP1 HPK model R3809U-50
 - Operating gain: ~1×10⁶
 - MCP2 Photek model PMT240
 - Active Ø: 40mm
 - Pore Ø: 10μm
 - Operating gain: ~3×10⁵
 - σ_t: ~ 25ps
 - ALD processed
- Performance
 - $-\sigma_t$:
 - MCP 0 (1742): 6.0ps


120


100

80

40

- MCP 1 (1499): 4.2ps
- MCP 2 (Photek): 3.6ps

D. Dannheim et al., private comm.

- Performance (cont'd)
 - Illumination rate in spill:
 - ~ 25MHz/cm² (G~1×10⁶) MCP0/MCP1
 - ~ 75MHz/cm² (G~3×10⁵) MCP2
 - 2 spills of ~5s per min.
 - IAC
 - Q(MIP) ~12-14pC
 - Per spill: ~ 16μ C/cm²
 - Per 12 days of continuous beam tests: ~ 0.55C/cm²
- Note
 - Similar implementation of MCP-PMTs for high-precision T₀ under development for LHCb beam tests
 - Readout based on CFD and picoTDC

- MCP concept is old but technology is still evolving and improving
- Most spectacular progress is on lifetime to be confirmed long-term on large quantities
- Trend towards finer anode spatial segmentation
- Very high rate capability is a challenge
 - Mitigated with lower gain
- Instrumentation is a challenge too
 - High channel number and density
 - High speed
 - High SNR