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Abstract

The lion’s share of time spent in the simulation of Cherenkov and
other scintillation detectors is spent on optical-photon transport, i.e. ray
tracing, a task that GPUs are uniquely qualified to perform. We present
EIC-Opticks, a fork of Opticks [1], which uses event aggregation to drasti-
cally accelerate photon transport simulation for low-to-moderate photon
yield experiments. During the full Geant4 Monte Carlo simulation of a
given detector, optical photon simulation is performed on GPU(s) using
the NVIDIA OptiX framework.

We validate this approach using the ePIC pfRICH [2] detector. We
find GPU and CPU simulations in excellent agreement. We characterize
numerical tolerances relevant to GPU ray tracing and show that they are
negligible compared to uncertainties from optical-physics modeling. For
5 x 10* electrons with a momentum of p = 5 MeV /c in the test case of the
pfRICH detector, EIC-Opticks shows an order-of-magnitude speedup over
multi-threaded Geant4, and a factor of up to 14849 over single-threaded
execution. Event aggregation further reduces the per-photon simulation
time from ~ 60 us for single events to ~ 20ns with batching, a factor of
~ 3000.

In order to make EIC-Opticks easily installable, we authored a Spack
package that makes it possible to install it with a single command. Ad-
ditionally, a Docker container® is provided for users with EIC-Opticks in-
stalled. EIC-Opticks provides guardrails for common pitfalls (e.g. nested
volume conversion, ray tracing setting optimization).
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1 Introduction

Optical photon simulation is a critical, yet extremely time-consuming part of
scintillator and Cherenkov photon detector simulations in both high-energy
(HEP) and nuclear physics (NP). In these fields, the most widely used sim-
ulation tool is Geant4 [3, 4], which executes optical processes on the CPU. To
give an example for the JUNO detector, 99% of simulation time was spent solely
on the simulation of optical photons [1]. This limits the size of simulated sam-
ples, slows design iterations, and complicates end-to-end studies that must be
repeated across many geometries. Furthermore, it limits the size of output data
that can be used for Machine Learning applications.

At the same time, specialized Graphics Processing Units (GPUs) have gained
massive popularity in entertainment and professional applications. Billions of
dollars have been spent since the start of the millennium with no sign of slowing
down. The key technologies are massive vectorization and since ca. 2018 ded-
icated ray tracing hardware. However, algorithms natively available for GPUs
do not support processes such as Rayleigh scattering. The Opticks software [1,
5] was built Nvidia’s ray-tracing engine OptiX [6]. Opticks also incorporates
pertinant physics like Mie scattering, Rayleigh scattering, etc. Monte Carlo
methods are used to introduce the randomness needed in HEP and NP simula-
tions. Opticks was originally developed for the JUNO experiment, where single
events generate hundreds of millions of optical photons. These photons occupy
the entire RAM of the GPU. Thus, overhead is minimal. However, most high-
energy and nuclear physics experiments involving optical photons yield only a
few hundred photons per individual event. Therefore, naive per-event offloading
can be slower than CPU-only simulation because the fixed overhead per offload
dominates the simulation time.

To address this issue, we introduce EIC-Opticks?, a fork and extension of
Opticks. Although developed mainly for Electron Ion Collider (EIC) [7] de-
tector studies, it lends itself readily to many low-to moderate photon-yield ap-
plications, including medical imaging simulations. EIC-Opticks adds an event
aggregation mode that batches thousands of Geant4 events into a single GPU
call. This design retains physics fidelity while removing per-event overheads
that otherwise erase GPU advantages at low photon counts.

The framework supports the standard optical processes required for Cherenkov
detectors (e.g. wavelength-dependent refractive indices and absorption, Rayleigh
scattering, and configurable surface reflectance/roughness models), and it inte-
grates with common HEP /NP workflows. For usability and reproducibility, we
provide containerized distributions and a Spack [8] package, enabling turnkey
deployment on hosts with modern NVIDIA GPUs.

We validated EIC-Opticks using the pfRICH detector [9] as a representative
EIC subsystem. In a study with 5 x 10* electrons at p = 5 MeV /c, we compare
observables between GEANT4 and EIC-Opticks and find agreement. In the
same configuration, batching reduces runtime dramatically: relative to single-
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threaded GEANT4 we observe speedups approaching three orders of magnitude
in the batched case, while outperforming multi-threaded GEANT4 by a factor
of ten for typical pfRICH workloads. These gains make previously prohibitive
optical studies practical at scale and open the door to systematic scans over
geometry, surface treatments, and operating conditions, not to mention the
magnitude of order more training data for Machine Learning applications.

The paper is structured as follows: Section 2 describes EIC-Opticks and the
batching strategy. Section 3 summarizes the pfRICH setup used in this work.
Section 4 presents physics validation against GEANT4. Section 5 reports per-
formance benchmarks and configuration studies. Section 6 discusses precision
limits and mitigation strategies. We conclude with a summary.

2 EIC-Opticks

Opticks is a GPU-accelerated framework that couples to GEANT4 and offloads
optical-photon transport to NVIDIA’s OpTiX ray-tracing runtime while leaving
all non-optical physics on the CPU. Building on this model, EIC-Opticks retains
the hybrid execution workflow and introduces an event—aggregation mode that
batches thousands of low yield GEANT4 events into a single GPU simulation.
This removes per-event launch and transfer overheads without changing the
underlying physics and makes configurations such as pfRICH efficient even when
individual events produce only O(10?-10%) photons per event.

To protect users from crashes due to failed geometry conversions, EIC-
Opticks analyzes constructive solid geometry (CSG) upon conversion from the
input GDML [10] files and emits warnings when it detects deeply nested boolean
operations (unions, subtractions, intersections). Since CSG is represented as full
binary trees in the accelerator architecture (GPU representation of the geome-
try), such nested boolean operations can yield a binary tree size of millions of
leafs. In such cases, we suggest modifications to the volume in question.

For usability and reproducibility, we migrated the most important runtime
controls from shell environment variables into a versioned configuration file. Pa-
rameters include the maximum number of boundary reflections, and the “prop-
agation epsilon” [11, 12], probably the most important user-defined setting in
the NVIDIA OptiX framework (see Section 6 for further details).

EIC-Opticks is distributed as a container image for zero-install execution and
provides a SPACK package for managed builds, ensuring consistent deployment
across developer workstations and computer clusters. As an additional option
EIC-Opticks can be installed with the following single command:

spack install eic-opticks “optix-dev@7.9.0

We also provide geometry specific tools to optimize crucial settings. First,
the maximum number of reflections controls when a photon is discarded. If
the setting is too large, a small portion of photons that do not contribute sig-
nificantly to the hit numbers use up excessive GPU time. If it is too small, a
significant number of relevant hits may be missing. To optimize this number,



simulations can be automatically run with several settings until the number of
hits converges. This analysis is needed for each geometry, since the expected
mean path and detector topology varies case by case. In Section 3 we illustrate
this trade-off specifically for the pfRICH geometry.

Secondly, the ray-tracing “epsilon” is a parameter of the underlying NVIDIA
OptiX simulation. It defines by how much each step is shifted on purpose
to avoid self intersection. If epsilon is too large, then photons may teleport
through a boundary surface. If it is too small, a photon may get very close to
a boundary and again teleport through, this time due to rounding errors. We
will demonstrate details of this trade-off again in the context of the pfRICH in
Subsection 6.



3 pfRICH detector at the Electron Ion Collider

The proximity-focusing Ring-Imaging Cherenkov Detector (pfRICH) is cur-
rently being constructed as part of the Electron-Proton/Ion Collider (ePIC)
[9] detector system slated to start begin operations in the mid-2030s Designed
to provide pion-kaon separation up to 7 GeV/c [13], the pfRICH detector sub-
system consists of a thin radiator layer, a 40 cm proximity gap, a photosensor
plane, and two mirrors to increase acceptance. The optical design prioritizes
compactness and low material budget while maintaining the high pion-kaon
separation, which makes it ideal to stress-test the EIC-Opticks software.

The collaboration’s original GDML file defining the pfRICH detector con-
sists of 126 volumes. For simulation studies in this work, we use a minimally
simplified geometry that preserves all optically relevant elements: aerogel ra-
diators (with wavelength-dependent refractive index and Rayleigh scattering),
inner /outer mirror assemblies with defined optical surfaces, the photosensor
window and detection planes. Volumes that are irrelevant to photon transport
or that rely on Geant4 solids currently unsupported (trapezoids) in our analytic
GPU geometry description are substituted with optically similar constructs that
match surface normals and refractive/reflective interfaces.

Figure 1: The Geant4 simulation of a single 5 MeV electron (red track) crossing
the pfRICH detector, creating Cherenkov photons (green tracks) mainly in the
aerogel tiles.



4 Validation

In order to validate EIC-Opticks we have used the exact same geometry both
in a standalone Geant4 simulation (version 11.2.1) and in a simulation where
the optical photons were offloaded to EIC-Opticks to be simulated on GPU.
We used the GDML file of the pfRICH geometry, with the only modification
being the approximated trapezoid volumes mentioned above. Note that for the
purposes of this comparison, the standalone Geant4 simulation uses the same
geometry as EIC-Opticks. The number of maximum reflections was set to 24 in
EIC-Opticks; this choice is explained below in Section 5.

50,000 electrons with a momentum of 5 MeV/c were simulated in individ-
ual events. In the case where all particles were simulated on Geant4 (CPU)
13,840,638 + 3720 hits were recorded. When optical photons were offloaded
onto the GPU to be simulated by EIC-Opticks 13,840,566 + 3720 hits were
recorded.

Photon hits XY plane (Z filtered Geant4)
Geant4 (filtered) Opticks

(log scale)

¥ position

Hits per bin

10°

Figure 2: 50,000 electrons with momentum 5 MeV /c shot in as a pencil beam.
Hit maps simulated by Geant4 (CPU) validation on the left and EIC-Opticks
(GPU) on the right. Event batching introduced in EIC-Opticks was utilized.
The identical (within statistical errors) hit maps prove that EIC-Opticks yields
the same results as Geant4.

In Fig. 2 the hit histograms of generated photons are shown, the left panel
was generated by regular Geant4 on a CPU, and the right one with EIC-Opticks.
One can see that the histograms are identical, and the Cherenkov ring and
caustic curves generated by the reflection of the optical photons on the outer
mirror are visible in both.

5 Performance

In order to compare the simulation of EIC-Opticks to Geant4 optical photon
propagation, 50,000 electrons, each with a momentum of 5 MeV/c were simu-



lated yielding 44 million optical photons. The time required to simulate the pho-
tons in Geant4 was measured as the time difference between the full simulation
run with and without optical photon propagation. In the case of EIC-Opticks,
we included all the overhead: copying the would-be simulated data to GPU,
ray-tracing, and copying the results back to memory. In Fig. 3 the speedup
using EIC-Opticks is plotted with respect to a multi-threaded Geant4 optical
photon propagation. The GPU simulation is 14849 times faster compared to a
single thread of Geant4 and 9.340.5 times faster than a multi-threaded Geant4
simulation with 20 threads. The GPU utilized was an NVIDIA GeForce RTX
4090, and the CPU was an Intel Xeon w7-3445.
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Figure 3: Speed increase of the GPU simulation compared to propagating the
photons with multi-threaded Geant4 (CPU) for different number of Geant4
threads.

The pfRICH’s photon occupancy is relatively small, meaning that overhead
plays a significant role on a per-event basis, and furthermore that the GPU is
not used to its full potential. We can achieve an additional dramatic speed-up
by batching multiple Geant4 events into a single GPU launch. In the left panel
of Fig. 4, the average time required to propagate a single photon is plotted for
different numbers of Geant4 events batched together on the GPU. When a single
event with ~100 photons is simulated, it takes ~60 us on average to propagate
one photon. Meanwhile, a batch of 10,000 events reduces this number to ~
20 ns. On the right of Fig. 4, the speedup is shown for different numbers of
events batched together compared to no batching. With the GPU’s memory
thus fully utilized, a speedup of ~ 3000 is reached.
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Figure 4: Left: Average time spent on the simulation time for one photon
with EIC-Opticks with different event batch sizes in a single GPU call. Right:
Speed increase of the GPU simulation due to batching compared to no batching.
Simulating 10,000 events in a single GPU call yields a speedup of three orders
of magnitude in the case of the pfRICH detector.

The maximum number of reflections on surfaces is one of the most important
settings in EIC-Opticks, described in Section 6. We simulated 50,000 electrons
with momentum of 5 MeV /¢ with maximum reflection settings from 5 up to 32
in steps of 1. In Fig. 5 the number of hits can be seen for different reflection
settings. The number of hits starts to plateau around ~24 reflections.
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Figure 5: Number of hits in the pfRICH geometry upon simulating 50,000
electrons 5 MeV/c with maximum reflection settings from 5 up to 32. One can
see that the number of hits plateaus around ~24, in which case the number
agrees with the baseline CPU Geant4 simulation within a statistical error.

In order to properly measure the run time and see whether there is a signif-
icant difference for specific settings, 20 simulations each were run for maximum
reflection values of 8, 16, 24, and 32. Table 1 shows the simulation time for each
setting. The time variation for different settings is on the order of 10%. How-
ever, for specific use cases, e.g. elongated scintillator bars where photons can be
reflected hundreds of times, warp—GPU core group that shares instructions—
divergence still has to be investigated.

Table 1: GPU simulation time required to simulate 50,000 electrons with a
momentum of 5 MeV/c for multiple maximum reflection settings

Maximum Reflections Time [s]
8 0.737 £ 0.008
16 0.83 £ 0.01
24 0.86 £ 0.01
32 0.86 £ 0.01




6 Photon leakage

EIC-Opticks uses ray-tracing provided by the underlying NVIDIA OptiX frame-
work. When the track of a photon crosses a boundary, naively the next step
should start at the boundary. However, OptiX utilizes single precision numbers,
and when calculating the origin of the next step, there is a chance that it will lie
still outside the volume. Thus, instead of being reflected on the surface in the
second step, the ray will intersect the boundary from the outer side and thus
escape from the volume, in other words, “leak” out. This happens due to the
reflection process that still changes the direction of the ray.

In order to prevent photons from this leakage (or teleport), a small offset is
added for each step call along its current direction. As shown in Fig. 6, even
though the origin of the second step is incorrectly in the other volume, the offset
pushes it back.

Rounding error
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Figure 6: A typical reflection from a surface: first step ending on the surface and
the second step originating from the surface (top). In ray tracing however (mid-
dle), rounding errors can cause the second step to start outside its originating
volume and thus being scattered from the outer side of the surface, effectively
teleporting through a surface. In OptiX, a ray offset is applied to each ray which
pushes such escapees (and all rays) back into the volume (bottom).

Since EIC-Opticks utilizes the Monte Carlo method to include bulk physics,

setting a proper ray offset becomes vital due to the following: in each step
the OptiX ray tracing function is called, which returns the surface that photon
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intersects. Afterwards the Monte Carlo method is utilized to decide which
physical process happens to the photon. For example, it can bulk scatter instead
of being propagated to the next surface. Yan and his colleagues reported the
same phenomenon [14].

In the latter specific case, if the scattering occurs very close to a boundary,
the ray offset can push the origin of the next step outside from the volume, as
shown in Fig. 7. Thus, there is an optimal value for the ray offset, if it is too
small the photon can leak due to rounding error, while if it is too large it can
teleport due to bulk scattering.

Scattering event

Rounding error

Figure 7: A ray that is being bulk scattered close to the surface (left) is pushed
out from the volume by the ray offset. If the direction of the ray had changed,
as in a typical surface reflection, this would not be an issue, since the origin of
the next step is moved along the direction of the ray.

In order to quantify photon leakage in the case of EIC-Opticks, we created
a simple geometry, consisting of two concentric spheres with radius 15 mm and
25 mm, respectively. The inner sphere is perfectly reflective on the inside, the
outer one detects photons that escape from the inner one. We simulated 10%
photons originating from the shared center. The maximum number of reflections
were set to 32; the scattering length was 1 m. When setting the ray offset to the
default value of 50 um, we observed ~ 30 leaks per 10° photons (30 ppm). In Fig.
8, the fraction of escaped photons when varying the ray offset setting is shown.
One can read off an optimal setting for this specific geometry around 50 nm, for
which leakage drops by a factor of 2000 to ~0.015 ppm. Since leakage is geometry
dependent, the optimal ray offset will vary. EIC-Opticks provides automated
scan utilities so that users can determine and validate the best settings for their
specific detector geometry.
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Figure 8: Fraction of optical photons leaking through a perfectly reflective spher-
ical surface for different ray offsets. The reason for the increase at low offsets
is rounding errors, while for large offsets it is caused by bulk scattered events.
The optimal ray offset depends on the geometry.

7 Summary

We introduced EIC-Opticks, a GPU backend for optical-photon transport simu-
lation that extends the Opticks framework to low- and moderate-yield detectors.
That was achieved by aggregating photons from thousands of Geant4 events into
a single GPU launch. Additionally, we introduced guardrails (e.g. CSG depth
checks, scene-epsilon scans) in order to automatize the choice of geometry spe-
cific settings. With these tools, users can safely import complex geometries and
minimize photon leakage.

We validated EIC-Opticks by simulating electrons entering the ePIC pfRICH
detector using Geant4. Comparisons for optical photon transport between EIC-
Opticks offloading and standard Geant4 CPU workflow were performed. Agree-
ment in output was confirmed, and a speedup of 148 + 9 over single-threaded
Geant4 and 9.3 + 0.5 over a 20-thread Geant4 configuration was shown.

The event aggregation first implemented in EIC-Opticks reduced the average
transport time per photon from ~ 60 us (no batching) to ~ 20 ns simulating
10,000 events in one batch, a ~ 103 throughput gain.

Furthermore, we showed how important is to set the maximum reflections in
EIC-Opticks, depending on the specific detector geometry in question. In the
case of pfRICH, we showed that a setting of ~24 is optimal. It yields the same
number of hits as the Geant4 validation simulation while minimizing the GPU
runtime as much as possible. EIC-Opticks provides the tools to carry out this
optimization for arbitrary geometries.
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We quantified the limitations of EIC-Opticks with respect to tracking er-
ror and “photon leakage”. The latter is a common issue of ray tracing in the
NVIDIA OptiX framework. We concluded that the tracking error is far lower
than the typical uncertainty in the underlying modeling (e.g., non-perfect mir-
rors). We additionally showed how photon leakage can be minimized, and we
provide scripts in EIC-Opticks so that users can optimize ray tracing’s settings
for their specific geometry.

By making GPU optical transport efficient in the low-yield regime, EIC-
Opticks enables fast, large-scale optical studies for EIC detectors, accelerates
geometry/surface scans, and unlocks the production of much larger training
sets for machine-learning workflows. Although demonstrated for pfRICH, the
approach generalizes to other Cherenkov and scintillator systems—including
medical-imaging simulations—where per-event photon counts are modest. EIC-
Opticks can be installed via Spack or used directly from provided container
images.
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