Backward Hadronic Calorimeter Status and plans

Leszek Kosarzewski

The Ohio State University

nHCal DSC-TC meeting 25.2.2025

Sampling fraction

Basic pre-TDR completed

- Zenodo v1: https://doi.org/10.5281/zenodo.14328280
- Review of v1: https://docs.google.com/spreadsheets/d/ 1mineH2breuoVui-uZm1ZYSraRquLjM9oOY4w2ASdvtA/edit?usp=sharing
- Repositories located here: https://github.com/orgs/OSUNuclearPhysics/repositories
- No review yet, only small text corrections
- Would be good for experts to look at it

- Global design prepared by project enginneers
- Acceptance
 - Front geometry limit: $-4.03 < \eta < -1.18$
 - Back geometry limit: $-4.14 < \eta < -1.27$
 - Clusters: $-3.95 < \eta < -1.25$
 - MC particles showering in nHCal(with hits): $-4.16 < \eta < -1.16$

Geometry

- 10 layers with total thickness 45 cm, 2.4 λ_0
 - 4 mm plastic scintillator
 - $\bullet~4~\mathrm{cm}$ steel absorber plates
- $\bullet~10~{\rm cm}\times10~{\rm cm}$ tiles now implemented, but can simply use
- $5 \, \mathrm{cm} \times 5 \, \mathrm{cm}$ for cost saving
- Similar to LFHCAL module designs: https://indico.bnl.gov/event/25021/
 - Direct: https://indico.bnl.gov/event/25021/attachments/57749/99174/8M% 20Tower%20Assem_Combined_Oct1.pdf
- Produce our own module? Most likely. Alternatively, reuse and modify LFHCAL module.

Integration with EMcal

- $5~{\rm cm} \times 5~{\rm cm}$ tiles are a lower limit
- $\bullet\,$ Due to larger transverse size of hadronic showers, even $10~{\rm cm}\times 10~{\rm cm}$ tiles are good enough

- Sampling fraction 0.95% for pions, but needs to be revisited
 - Used pion energy instead of energy deposits as a reference
- e/h pprox 1 ratio suggests compensation
- May need more frequent sampling to better measure low energy neutrons eg. below $E_k=1\,{\rm GeV}$

Neutron detection efficiency

Sam Corey, OSU

- Efficiency of requiring a hit with a sum of hit contributions energy integrated up to t_{int} and passing a threshold E_{th} , $t_0 = 0$
- Checked with simulation only no digitization
- E_{MIP} is 0.75 MeV per layer
- *E_{th}* has the biggest impact
- $\bullet~100~\mathrm{ns}$ is good enough, but lower energy neutrons may need longer times
- 60% efficiency for $E=300~{
 m MeV}$ neutrons $E_{th}=0.1 imes E_{MIP}=75~{
 m keV}$ and 100 ${
 m ns}$

Alexandr Prozorov, CTU

- Shoot single neutrons and compare ideal projections to RECO clusters
- Vary energy and tile size to obtain scaling
- $\bullet\,$ Even large tiles up to 25 ${\rm cm}\,$ seem to be OK
- Need track projections and cluster matching in realistic DIS events next steps

Subhadip, Pal

- Shoot single neutrons and pions at different distances
- Vary energy and tile size to obtain scaling
- $\bullet\,$ Even large tiles up to 25 ${\rm cm}\,$ seem to be OK
- Need track projections and cluster matching in realistic DIS events next steps
- This is a workaround for a full study with track-cluster matching, ideally need support from Reconstruction Software group to get it working and tested

- Shoot neutrons and pions at different distances
- $\bullet\,$ Merging appears to start at 33.9 ${\rm cm}\,$
- $\bullet\,$ Distance of 25.6 ${\rm cm}$ seem to be separable
- Need track projections and cluster matching in realistic DIS events next steps

- Neutron cluster vs. charged cluster separation
- $\bullet~22\%$ of MC clusters are within 30 ${\rm cm}$
- $\bullet~5\%$ within 30 ${\rm cm}$ of all reconstructed due to merging
- $\bullet~0.7\%$ of charged MC particles are within 30 ${\rm cm}$ from a neutron

High material impact on shower reco

full epic

- Investigate impact in more details
 - Basic distributions, hits etc. vs. radial distance
 - Check the true stop vertex of MCparticle
- Try to determine optimal clustering parameters
- If needed revisit position resolution study with full geometry

Conclusions

- Presented status
- Prepared a list of tasks in a separate document

BACKUP

- Check if using max energy deposit in the first layer improves position resolution
- O 3D clustering
 - Store subclusters for every layer
 - Code for BIC from Sylvester: https://eicweb.phy.anl.gov/EIC/juggler/-/blob/ main/JugReco/src/components/ImagingClusterReco.cpp
 - Fit a line through the clusters across the layers (and compare to a reco track)
- Independent vs. integrated readout from layers
 - Affects 3D clustering etc.
 - If removed, most likely no effect on energy resolution
 - Can reduce channels by up to factor of 10
 - Any suggestions about which quantity may decide that?

Shower reconstruction with machine learning

Figure 7: Examples of 4 reconstructed 3D shower shapes in the ZDC for events with 1 neutron $(N_n = 1)$, 2 neutrons $(N_n = 2)$, 4 neutrons $(N_n = 4)$, and 9 neutrons $(N_n = 9)$. The color code represents hit energy in terms of $E_{\rm MIP}$. The marker size is displayed proportionally to hit energy for display purposes.

- Potential to use machine learning to improve shower reconstruction
- Studies done by LFHCAL Insert/ZDC group (UC Riverside)
 - Applied Graph Neural Networks (GNN): https://arxiv.org/abs/2406.12877
 - [Nucl.Instrum.Meth.A 1047 (2023) 167866]
- Revisit later

() Can we extend from $45 \mathrm{cm}$ in z to eg. $70 \mathrm{cm}$?

- Limited by oculus and room for electronics
- Increases cost estimate?
- Improves energy resolution quantify?
- Other benefits?

Additional charged veto and SMD layer

- Investigate if adding extra scintillator layer as a charged veto helps isolate neutral showers
- ${f 2}$ This extra layer needs to be thicker eg. 2 cm to leave enough signal
- On have better granularity than standard tiles
- **()** Revisit option of adding an SMD layer with high position resolution
- Initially no plans to reuse STAR EEMC SMDs, because of too low light yield
 - https://wiki.bnl.gov/athena/images/6/60/ATHENA_bnHCal_Notes_v1.pdf
- Similar idea to KLM
- Another option to use smaller tiles

Benchmarks for CD/CI

EIC / benchmarks / detector benchmarks

D detector_benchm	✿ Star 0		
<pre></pre>		History Find file Code ~	Project information
ecaLgaps: update requirements.txt to workaround an upstream bug (#114) Dmitry Kalinkin authored 12 hours ago		Unverified 🥑 5d1e7835 🛱	->- 422 Commits § ⁹ 47 Branches
Name	Last commit	Last update	🖉 1 Tag
🗈 .github/workflows	mirror.yaml: add github.event_name to	2 months ago	README
E benchmarks	ecaLgaps: update requirements.txt to	12 hours ago	Created on October 02, 2020
🕒 .clang-format	Prepare canyonlands	3 years ago	
♦ .gitignore	Add benchmarks/ecal_gaps (#13)	9 months ago	
8 .gitlab-ci-local-variables.yml	fix: jug_xl -> eic_xl	3 months ago	
🤟 .gitlab-ci.yml	Don't depend on S3 service (#107)	2 weeks ago	
.pre-commit-config.yaml	Add a basic .pre-commit-config.yaml	2 months ago	
c .rootlogon.C	.rootlogon.C: preload HepMC3 library	11 months ago	
*** README.md	README.md: update with latest info	3 months ago	

- Develop benchamrks for CD/CI
- https://eicweb.phy.anl.gov/EIC/benchmarks/detector_benchmarks
- https://indico.jlab.org/event/420/contributions/8307/attachments/ 6911/9434/20210504-Automated_workflows.pdf
- Useful for automated checks: hit distributions. acceptance etc.
- Ideal task for bachelor and undergraduate students
- Submitted a thesis proposal at Warsaw University of Technology
 - May be piked up by a student around February-March 2025

- Neutron MC particle vs. charged MC particle separation
- \bullet 0.7% of charged MC particles are within 30 ${
 m cm}$ from a neutron