

Jets as tools to *characterize* QGP

Medium effects on jets allow extraction of QGP transport coefficients:

- q: transverse momentum diffusion (radiative energy loss)
- ê: longitudinal drag (collisional energy loss)

Jets as tools to *understand* QGP

How does the strongly coupled liquid emerge from QCD?

- Jets probe QGP at different (controllable) length scales
- Scattering sensitive to quasi-particle nature of the medium

Gunther Roland

Jets as tools to *manipulate* QGP

How does QGP respond to local energy deposition by jets?

No high p_T suppression in dAu

Photon-hadron correlations

correlations

Disappearance of away-side correlations

Suppression of heavy-flavors using single electrons

Observation of low p_T, large angle radiation

Flavor dependence

Fragmentation functions

Gunther Roland

opposite sign

in AuAu

Today

We can measure jets in heavy ion collisions

Jet measurement approach:

- Clustering with anti-k_T algorithm
- Subtraction of event-by-event background energy estimate
- JEC using pp calibration and MC correction factors

Achieved good experimental control

- Reconstruction efficiency (close to 100%@50+ GeV)
- Jet energy scale (2-4% above 30 GeV)
- Resolution and UE fluctuations (~15%@100GeV)

This was not obvious a-priori; success enabled by nature of observed jet modifications

Complementary approaches to reconstruction biases

- At low p_T: efficiency vs fake jets
- Restrict measurement to high p_T (CMS/ATLAS)
- Ensemble-based measurement with combinatorial correction (ALICE/STAR)

For sufficiently high trigger p_T, all away-side jets are found

Gunther Roland

Jets at RHIC ar

We can extract QGP transport coefficients from jet quenching measurements

Systematic evaluation of single hadron suppression data from RHIC and LHC in perturbative framework

Similar information from jet R_{AA}, dijet asymmetries, γ-jet momentum shift

 \hat{q} determined with about 50% uncertainty Combined RHIC and LHC data:

- Test model consistency
- First hint of temperature dependence

Quantitative extraction of \hat{e} awaits more precise heavy flavor data

We can observe medium modifications of jet momentum and angular structure

We see out-of-cone momentum flow relative to jet

PHENIX γ-hadron correlations

Enhancement of low p_T correlated yields at large angles to jet axis

Is this "trivial" jet-medium coupling or signature of modified QCD branching ("turbulent flow")?

Tomorrow

Future program enabled by accelerator development

	2010–2011	HL-LHC
	$2.76 { m TeV} 160 \mu { m b}^{-1}$	$5.5 { m TeV} 10 { m nb}^{-1}$
Jet p_T reach (GeV/c)	~ 300	~ 1000
Dijet ($p_{T,1} > 120 \text{ GeV/}c$)	50k	$\sim 10M$
b-jet ($p_T > 120 \text{ GeV/}c$)	~ 500	$\sim 140 \mathrm{k}$
Isolated γ ($p_T^{\gamma} > 60 \text{ GeV/}c$)	$\sim 1.5 \mathrm{k}$	$\sim 300 k$
Isolated γ ($p_T^{\gamma} > 120 \text{ GeV/}c$)	_	$\sim 10 \mathrm{k}$
$W(p_T^W > 50 \text{ GeV/}c)$	~ 350	~ 70k
$Z(p_T^2 > 50 \text{ GeV/}c)$	~ 35	\sim 7k

Compared to LHC Run1: x60 due to higher luminosity; x3 due to higher √s

Major upgrades to all LHC experiments

Expanded calorimetry
New inner tracker
Faster TPC readout
Improved data acquisition rate

ATLAS

Improved trigger system
New/extended inner tracker

Improved trigger system
New/extended inner tracker

A state-of-the-art jet detector at RHIC

Use consistent experimental approach at RHIC and LHC to provide lever arm from $T \approx T_C$ to $T \gg T_C$ Study jet quenching vs medium temperature and density, parton p_T , flavor and pathlength

- to achieve a detailed characterization of QGP
- to understand how QGP properties arise from QCD

Key capabilities

- Full calorimetry
- Tracking
- Rate capability to exploit luminosity (>50/nb) and √s range (62-200GeV) at RHIC

RHIC integrated luminosity up to x10 higher than LHC

Kinematic reach at RHIC and LHC

Kinematic reach: Today and tomorrow

Jets at RHIC and LHC

From Z⁰ tags to B tags, and from LHC to RHIC

Energy flow and medium response

Do we have a medium, if there's no medium response?

Challenge:

- Strength and angular structure of medium response unknown
- Jets are correlated with the complex e-by-e flow fields through quenching
- How to distinguish medium-response from modified jet branching?

- 0.015/nb
- 4 months analysis time
- in-cone vs out-of-cone
 "missing p_T" for dijets

- 0.15/nb
- 2 years analysis time
- Improved tracking correction
- Improved jet bkg subtraction
- Detailed ΔR dependence of "missing p_T" for dijets

- 10/nb (LHC) 50/nb (RHIC)
- γ+jet (no flow correlations)
- MPT → absolute correlated yields vs (Δη, Δφ)
- Differential in e-by-e energy loss
- Different medium conditions at RHIC and LHC

Indication of energy flow differences at RHIC vs LHC

Jet measurements as QGP microscope

Kurkela, Wiedemann, arXiv:1407.0293

Detailed jet studies, in particular of intrajet and inter-jet angular structure, may reveal microphysics of QGP

Jet structure in pp and PbPb

Summary

- Jets probe fundamental features of QGP
 - We reached an era of quantitative comparison of data and theory
 - We have learned how to construct jet-based observables in heavyion collisions
- Jets can solve fundamental questions in hot QCD
 - Precise measurement of transport properties
 - Further characterization of QGP liquid nature
 - Understanding the emergence of QGP nature from the underlying degrees of freedom
- High precision studies ahead at RHIC and LHC
 - Upgraded facilities, upgraded and new experiments
 - Close experiment/theory collaboration
 - Close collaboration with pp
 - Close coordination of RHIC and LHC efforts