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Introduction
The reduction of streaming and voluminous data sets while maintaining accurate representations of
quantities of interest (QoIs) is a critical capability across the Office of Science (SC). SC-supported
experiments, observations, and simulations produce data at volumes and velocities that are already
overwhelming network, storage, and compute capabilities and their projected growth will greatly
exacerbate this imbalance. The Advanced Scientific Computing Research program office held a virtual
workshop in January 2021, bringing together 155 participants and 41 observers across experimental,
observational, and computational application areas and research thrust areas in compression, reduced
representations, experiment-specific triggers, filtering, and feature
extraction/QoIs to identify priority research directions (PRD) leading to enhanced
capabilities in data reduction. This workshop examined many scientific drivers,
such as radio astronomy, fusion, combustion, climate, light sources, nuclear
physics, and genomics, which are in desperate need for new Research &
Development (R&D) in data reduction, because they currently risk ad hoc
decisions that can limit the amount of knowledge gathered from SC facilities.

New workflows are beginning to emerge to both manage data and fully exploit
the incredibly rich information produced by SC facilities. These data reduction
workflows employ triggering, filtering, sampling, compression, reduced order
modeling and feature detection. The workflows extend from
observational/experimental devices to networks to remote and local storage to
desktop and leadership computing facilities and require optimization across a
diverse range of hardware.

In order for application scientists to trust data reduction methodologies, reduction
techniques should be usable and adoptable by communities through best practices, benchmarks, data
sharing, resource sharing, and through the development of tools that enable scientists to navigate these
resources. The workshop focused on new R&D capabilities which can allow scientists to quantify the
uncertainties in QoIs, along with preserving features to a specified tolerance. Furthermore, progressive
techniques for streaming data need to be developed to enable scientists to make tradeoffs between the
uncertainty, speed, and resource utilization. Since these workflows typically run on all types of
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computational resources, these techniques need to be highly performant and portable across different
architectures.

Science Drivers
Many science applications such as high energy physics, nuclear physics, radio astronomy, and light
sources highlighted the large increase in data volumes. To satisfy network and storage constraints,
experimental facilities reduce data at the edge before it is moved and stored. In some cases, in
experimental and observational facilities, such as in high energy physics, nuclear physics, light sources,
fusion, detectors and triggers are used to enhance the selection of scientifically interesting activity to save
to storage and/or analyze during the experiment. For example, radio astronomy uses complex filters and
triggers to determine which data are saved, a technique that not only allows scientists to store less data,
but to also look for short-lived events, thereby linking reduction with anomaly detection. Simulations,
such as in combustion and fusion can generate hundreds of petabytes of data in a day and need in situ
reduction techniques.

New detector technologies allow more data to be captured at higher rates, which increases the data
velocities, and necessitates the need for streaming data reduction techniques. Simulations use accelerators
to increase the velocity of their calculations, which increases the velocity of the data being generated. For
example, computational combustion relies on large simulations that search for features, events, and

anomalies and produce QoIs that could be combined
with in-situ machine learning and artificial intelligence
workflows to produce reduced order models in addition
to a complete data model repository. Next generation
experimental and observational facilities are also
generating data at increased velocities and often require
fast feedback on data-taking, placing hard real-time
requirements on data reduction. By providing scientific
information within seconds, anomaly detection could
take place in near real time, allowing material

characterization experimenters to collect data under optimum conditions. In all of these cases, there is a
crucial need for fast reduction techniques that must work on diverse architectures and stream data across
processes in complex experimental workflows, ensuring that short-term events (for example from the
Very Large Array and Square Kilometer Array radio astronomy facilities) can be captured and analyzed in
the reduction process.

Data from these facilities are too expensive or too difficult to reproduce. Capturing the provenance is
viewed as an essential part of the reduction process to foster trust and add value to the data. Ensuring that
the saved reduced data can be trusted requires, among other things, quantification of uncertainty in the
QoIs, a significant challenge given the large variety of data each science case produces. In all of the
science cases, several design issues must be met. 1) The reduction techniques must be trustworthy so that
all of the post-processing of the data contains no inaccurate results or non-physical artifacts. 2) Reduction
methods need to be efficient and accurate, and scientists need to understand the tradeoff between
efficiency and accuracy, and 3) The techniques need to work in science workflows, satisfying constraints
specific to each workflow’s deployment environment (e.g., “edge,” HPC resources).

The workshop led to the formulation of the following four priority research directions (PRDs).
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PRD1: Effective and trustworthy reduction algorithms and tools
A recurring theme among applications discussed at the workshop, such as fusion simulations and
next-generation radio astronomy facilities, was the vital importance of understanding and quantifying the
impact of data reduction on the principal outputs and QoIs produced by the application. The ability to
quantify those impacts with realistic numerical bounds is essential if the scientist is to have confidence in
applying data reduction. Ideally, the data reduction procedure should be able to preserve the accuracy in
QoIs to any user-prescribed tolerance while, at the same time, not creating a bottleneck in the analysis.

Data reduction procedures should provide the scientist with the flexibility to specify certain
user-prescribed quantities which should be preserved to a specified tolerance. Additionally, it is important
to quantify the uncertainties in the QoIs and/or to specify the uncertainty before the data are reduced. This
is essential to ensure that scientists can trust the reduction routines and alleviate concerns that the reduced
data might fail to preserve physical invariants, such as mass, momentum, energy, etc., compromising the
physical validity of the subsequent analysis or even creating non-physical features and instabilities in a
simulation. There are many methodologies to reduce
data, such as functional data analysis, statistical
methods, hierarchical methods, and machine learning
techniques. Although these techniques typically work
well for uniform grids with quantifiable errors on the
quantity being reduced, a key priority is ensuring that
these can also work for nonuniform grids as well as
being able to quantify the uncertainties in the QoIs.

While there is a clear need for reduction techniques
that preserve accuracy, such techniques must be
executed on machines subject to a limited set of
resources such as memory, bandwidth, storage, and
time. Accordingly, algorithms should be efficient in
their use of resources and should permit clear
understanding of the tradeoffs between achievable
accuracy and resource constraints.

Research in this area should include the development of one or more of the following: 1) Effective
algorithms with robustly estimable or provable error bounds for the data being reduced, 2) Effective
algorithms with robustly estimable or provable error bounds in QoIs, 3) Algorithms which can meet
constraints on time, memory, storage, and computational resources, 4) Understanding and optimizing
tradeoffs between accuracy, memory usage, reduction error, and time to solution, 5) Methods for
space-time, unstructured data (e.g., particles) and/or high-dimensional datasets, 6) Techniques to quantify
uncertainty in the QoIs.

PRD2: Progressive data reduction to enable prioritization for efficient
streaming
As data volumes and velocities increase, scientists need effective methods to move and process data
progressively. Such techniques allow data to be refactored, according to scientific priorities, e.g.
timeliness, freshness, accuracy, and uncertainty, so that they can be used for streaming data from
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experiments or simulations, combining data from multiple sources, or retrieving data from storage. In
addition, data reduction algorithms may take into account additional requirements from users based on the
uncertainties of the input and output, as well as others including network bandwidth and computational
constraints.

One key feature differentiating progressive data reduction from other reduction algorithms is that it is
based upon user and system defined constraints. The most prominent constraint is time, whether for the
data reduction step or the entire workflow. If scientists are willing to use extra time, then they may gain in
accuracy or another measure. There are also situations in which there are constraints on the availability of
computational resources (e.g. network bandwidth, free compute nodes, storage) during a live

experiment/simulation. In these cases, users need to
constrain the amount of data being moved and processed
and only work with the most important data records based
on their priorities. In other use cases, progressive
reduction techniques may allow users to interactively
select the amount of data that can be analyzed and
visualized, allowing scientists to cope with system
constraints, while providing assessment of uncertainties
in their analytics.

Research in this area should include the development of
one or more of the following: 1) Developing effective
reduction algorithms that allow for progressive data
reduction and analysis taking into account the constraints
mentioned above, 2) Understanding and developing

uncertainty and reliability of progressive data reduction algorithms, 3) Developing adaptive algorithms
that could dynamically adjust the accuracy based on the resource constraints, 4) Developing reliable
execution time bounds for different error characteristics of downstream workflows, 5) Automating data
reduction for streaming data taking into account the constraints and accuracy requirements of the
end-to-end workflows.

PRD3: Algorithms that preserve information in features and quantities
of interest
Research is needed to target the development of data reduction methods that preserve information and
enable knowledge discovery directly from reduced representations. This includes development of scalable
statistical methods for discovering/capturing underlying structure/manifolds in data, and that have
data-reconstruction ability with theoretical bounds and/or quantified uncertainties. This is useful in order
to enable performance guarantees for specific downstream QoIs and adaptation to user-specified
tolerances. These methods should enable both interpolation and extrapolation of data, while preserving
relevant structure, constraints, or physical invariants. Also necessary are methods that maximize
preservation of high-level important information and minimize preservation of low-level noise and other
artifacts (e.g., numerical discretization) unrelated to the QoIs. This can involve, for example, data
transformations to enhance/separate useful or unanticipated information from less useful/known
information. R&D should also target methods that enable deriving representations, features, and QoIs that
can be used as inputs to subsequent downstream operations such as querying, subsetting, feature
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detection, feature tracking, summarization, projection, and further transformations. Work is also needed to
provide metrics that reflect application-specific information, which can be used in the development of
algorithms for compression and data reduction.

Moreover, in order to provide measures of confidence in the quality of reduced data representations, work
should target the broad landscape of error analysis and uncertainty quantification in data-reduction
workflows. This includes work to
estimate the bounds on error, as well as
the form, distribution, and magnitude of
noise and uncertainty, in order to assess
the amount of information that can be
reliably extracted from a given dataset,
and captured in reduced representations.
Further, there is a need for optimal
reduction methods, targeting reduction
based on sufficient statistics, that
preserves goal-oriented information in
specific features and/or QoIs.

Research in this area should include the
development of one or more of the
following: 1) Reduction methods that
learn and preserve underlying structure
and physical invariants in data. 2) Reduction methods that provide effective representation of high-level
information on QoI while robustly handling noise and other artifacts. 3) Goal oriented methods targeting
reduced representations with data-reconstruction ability, tailored for specific downstream operations. 4)
Reduction methods that provide quantification of uncertainty in reduced representations, accounting for
errors, noise, as well as data artifacts. 5) Methods for learning optimal reduced data representations, with
parsimonious capture of maximal information.

PRD4: Mapping to new architectures and use cases
Scientific instruments producing vast amounts of data often use systems composed of tiered layers of
hardware and software to enhance the selection of scientifically interesting activities for saving to
persistent storage or to analyze during an experiment. The data may be acquired from multiple sources
with varied readout timescales, and associated pipelines require real-time or near real-time reactions to
keep up with the dataflow. With the next generation of electronics, networking, computing, and storage
technologies, and advances in data reduction technologies, there is a possibility to rethink how these
pipelines are architected, reflecting the need to operate in ever more extreme environments.

Novel technologies and emerging architectures provide new opportunities to address these data reduction
requirements and also lead to new research challenges. As the complexity and heterogeneity of
technologies such as purposeful accelerators, programmable edge and in-network computing, and new
storage devices grow, new research is needed in data reduction algorithms and software stacks that can
leverage their unique capabilities. Ensuring portability across these highly heterogeneous architectures
will be increasingly important. These data reduction algorithms would need to meet hard performance
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requirements on real-time latency, computation, network bandwidth, or compression factors, depending
on the application.

Research in this area should include the development of one or more of the following: 1) Novel reduction
techniques implemented on heterogeneous architectures capable of extracting information that distills data
into actionable information on the timescales required by experiment, 2) Development of composable
data reduction pipelines and workflows. 3) Operation and optimization of reduction and feature extraction
techniques under varying real-time and near-real-time constraints, implemented in different layers of
hardware, software, and executing on the edge, in the network, and on HPC resources. 4) Development of
portable and adaptable reduction techniques that can enable the autonomous control of experiments. 5)
Co-design of highly-optimal reduction algorithms on current and next generation hardware.

Summary
Data reduction for science holds promise for addressing the challenges of moving, storing, and processing
massive data sets produced by the scientific community. Pursuing the PRDs outlined here will enable
advances in data streaming, fast feedback and/or autonomous control of experiments, and faster time to
scientific insight. These advances will result in a significant improvement in the ability to transport, store,
process and interpret experimental, observational, and computational data.
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