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SUMMARY OF PROPOSAL 

Description of Project:  Machine Learning (ML) plays an increasing role in the scientific 
research areas critical to the missions of Department of Energy. While new ML algorithms are 
being developed at a fast rate, deploying them in large-scale data-intensive scientific applications 
for production will still require significant improvement to the existing  software  infrastructure. 
There is an urgent need for an ML software service infrastructure that can assist the users in 
utilizing the diverse computing resources efficiently for a better integration with the scientific 
ZRUNfORZV.  We SURSRVe WR cRPbLQe CRPSXWaWLRQaO ScLeQce IQLWLaWLYe (CSI)¶V e[SeUWLVe LQ hLgh 
performance computing (HPC) and Machine Learning (ML), and Physics Department Nuclear 
and Particle Physics Software (NPPS) gURXS¶V e[SeUWLVe LQ SURYLdLQg OaUge-scale distributed 
computing services, to investigate and develop a scalable hardware-and-application-agnostic 
distributed ML service environment.  To achieve this, key issues related to portability (to 
increase accessible re-sources), scalability (to ensure high performance) and agility (to reduce 
deployment latency) will be systematically studied. Issues related to cyber security such as user 
authentication will be addressed. To accomplish this, we will develop an integrated software and 
hardware test bed based on the Institutional Cluster resources available at Brookhaven National 
Laboratory.  Throughout the project, we will use ATLAS and DUNE ML applications as driving 
examples, such as the ATLAS FastCaloGAN training mentioned previously. Performance 
benchmarks (in terms of time to solution, coding efforts and other metrics) will be documented 
periodically to track the progress of the project. 

Expected Results:   The outcome of the project will be the evaluation of different approaches for 
user interface, intermediate provisioning and backend execution along with a set of prototype 
tools that can be used to guide the design and development of a production-level ML service 
framework in the future. This will be an enabler for expanding scientific creativity in AI/ML 
applications towards models of a scale and complexity otherwise impractical, or with prohibitive 
deYeORSPeQW/WUaLQLQg WLPe UeTXLUePeQWV. The SURMecW aOLgQV ZLWh aQd LV aQ eQabOeU fRU BNL¶V 
strategic growth plan to use AI/ML to create solutions to experiment-driven computing 
challenges across the Laboratory, leveraging BNL and wider computing resources to do so. 



PROPOSAL

Abstract

We propose to combine Computational Science Initiative (CSI)’s expertise in high perfor-
mance computing (HPC) and Machine Learning (ML), and Physics Department Nuclear and Par-
ticle Physics Software (NPPS) group’s expertise in providing large-scale distributed computing
services, to investigate and develop a scalable hardware-and-application-agnostic distributed ML
service environment. To achieve this, key issues related to portability (to increase accessible re-
sources), scalability (to ensure high performance) and agility (to reduce deployment latency) will
need to be systematically studied, and are the key research questions of our proposal. Container-
ization and portable ML frameworks will be investigated as potential portability solutions, and
performance analysis and modeling of the application behaviors will be studied to help intelli-
gently select the best platform to execute the ML workflows in a scalable manner. Lastly workflow
management systems such as PanDA will be investigated for fast deployment to the target large-
scale distributed systems. Issues related to cyber security such as user authentication will also
need to be addressed. To accomplish this, we will set up an integrated software and hardware
test bed based on the Institutional Cluster resources available at Brookhaven National Laboratory
(BNL). The success of the proposed research will pave the way for the development of a scalable
distributed ML service to provide large-scale processing resources to ML applications across the
BNL science programs and beyond.

1 Introduction

We propose to combine Computational Science Initiative (CSI)’s expertise in high performance
computing (HPC) and Machine Learning (ML), and Physics Department Nuclear and Particle
Physics Software (NPPS) group’s expertise in providing large-scale distributed computing ser-
vices, to investigate and develop a scalable hardware-and-application-agnostic distributed ML ser-
vice environment. While new ML algorithms are being developed at a fast rate, deploying them
in large-scale scientific applications for production will still require significant improvement to
the existing software infrastructure. This is especially crucial when it comes to data-intensive
applications where training and hyperparameter optimization often take a long time, and require
large-scale computational resources. As ML plays an increasing role in the scientific research areas
critical to the missions of Department of Energy, there is an urgent need for an ML software service
infrastructure that can assist the users in utilizing the diverse computing resources efficiently for
a better integration with the scientific workflows. This service should aim to take all the manual
optimizations and orchestration out of the users’ hands, ideally through one coherent suite of ser-
vices and scientist-friendly interfaces. Such a need is outlined in the Artificial Intelligence (AI) for
Science Townhall Meeting report [1], where challenges and research needed are described. Our
research will specifically address the challenge of “a software stack that facilitates efficient use
of a broader range of algorithmic and mathematical techniques.” and “Simultaneously, given the
current trends, data sizes, and the role of hardware in ML, it is reasonable to expect the evolved
software stack to take even greater advantage of the new hardware accelerators, as well as to target
distributed computing architectures”. This project is also in line with BNL’s strategy to employ
ML and AI for accelerated scientific discovery.

To achieve this, key issues related to portability (to increase accessible resources), scalability
(to ensure high performance) and agility (to reduce deployment latency) will need to be systemat-
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ically studied, and are the key research questions of our proposal. They thus constitute the three
main tasks of the proposed project:

• Portability: There are two components to portability in this context: software environment
portability and hardware portability. The former may be addressed by containerization, while
the latter may be embedded in the ML frameworks under consideration (such as GPU/TPU
support in TensorFlow). How to efficiently marry the two will be a topic for investigation,
as well other potential portability solutions.

• Scalability: Scalability of ML training can sometimes be inherent to the algorithms, hard-
ware platform and training data used. Here we will investigate ways to develop a tool that
can intelligently select best computational resources and ML frameworks based on analysis
and modeling of the application behaviors.

• Agility: We will explore ways to efficiently choose and utilize computational resources that
may be available at large data centers, on the grid or cloud. Workflow management systems
such as the ATLAS PanDA/iDDS [3] workload management system and other similar tools
will be studied for efficient work-dispatching in real time.

Since most of the ML workloads will likely be deployed on a remote system, issues related to
cyber security such as user authentication will also need to be addressed. To accomplish this,
we will develop an integrated software and hardware test bed based on the Institutional Cluster re-
sources available at Brookhaven National Laboratory (BNL). The success of the proposed research
will pave the way for the development of a scalable distributed ML service to provide large-scale
processing resources to ML applications across the BNL science programs and beyond.

2 Science Drivers and Current State of Practice

Machine Learning has played an increasingly important role in large-scale data analysis and
simulations at the experimental facilities such as the Large Hadron Collider at CERN [2, 3] and
National Synchrotron Light Source II [4]. For the next-generation experiments such as the Electron
Ion Collider (EIC) at BNL, it is anticipated that ML will play an even more important role than
currently plausible given the rapid advances in this field. From the EIC detector design to the
accurate reconstruction of parton distribution functions, ML can significantly accelerate the pace
of scientific research in the EIC era. The upcoming Deep Underground Neutrino Experiment is also
investing heavily in ML-assisted simulations and data analysis, such as track reconstruction and
signal processing [5]. Many recent ML-related efforts in High Energy Physics were reported at the
recent international conference on Computing in High Energy Physics [6], where challenges and
progress related to distributed machine learning and deep learning were discussed. One common
message is that distributed training on GPUs can greatly reduce the training time without significant
loss of accuracy. However, different ML applications tend to customize their own optimization
strategies, owing to the proliferation of ML software and frameworks available. These frameworks
include scikit-learn, TensorFlow, PyTorch, and Keras, with new software and frameworks being
released at a fast rate. These manual one-off optimizations are labor-intensive and hard to scale
to the vast landscape of the potential ML workflows in the High Energy Physics, Nuclear Physics
and other scientific communities.

Here the challenges associated with the manual optimization approach are further explained.
The ML community sees many new topologies published each year, with an increasing number of
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contributions from the domain scientists. These topologies typically build on existing ML frame-
works [7] such as TensorFlow, PyTorch etc. However, achieving high performance on each new
topology remains challenging, as each requires some level of deep changes within each framework
to improve the training performance for each target hardware backend, which can be CPU, GPU,
or TPU-like accelerators. This problem is compounded by the need for large-scale training and op-
timization in data-intensive applications. While several distributed machine learning frameworks
exist, such as Apache Hadoop, Spark, Hovorod etc., their suitability for data-intensive scientific
workflows varies case by case. And it often falls on the scientists to choose and fine tune these
tools manually. Such diversity and complexities of the ML software ecosystem limit scientists’
ability to efficiently apply ML in their workflows, hindering the overall scientific progress. For
example, the ATLAS FastCaloGAN [2] requires 100 GPU-days to do just one training pass on the
full detector. Coupled with the expected order of magnitude higher computational demand of the
next-generation physics experiments such as High-Luminosity LHC, DUNE and EIC, the need for
a portable and scalable ML service environment is even more urgent.

While ML services aiming to abstract hardware details from users exist for commercial clouds,
such as Microsoft Azure ML service, such a service environment is lacking for the more traditional
HPC setting. One of the challenges is in the interaction between the end users and the remote sys-
tems due to issues such as user authentication. Recently a new class of serverless computing such
as Function as a Service (FaaS) has gained significant attention of the scientific community as a
way for the users to write light-weight functions to be executed in a cloud computing-like environ-
ment. For example, funcX [8] is a high-performance FaaS system designed to orchestrate scientific
workloads across heterogeneous computing resources, from laptops and local servers to campus
clusters, cloud computers, and even supercomputing facilities. Users first set up funcX endpoints, a
persistent service launched on the remote compute nodes that serves as a gateway for routing func-
tions to and executing them on the nodes. The authentication is enabled through Globus to ease
the administration overhead. Then, users register the workload Python function to be run on the
endpoints with funcX Client, which returns a universally unique identifier (UUID), a 128-bit label
used for information in computer systems. By specifying the UUIDs representing the workload
and the target endpoint, funcX can then run the Python function remotely and asynchronously and
retrieve the result. To our knowledge, such a service does not exist for ML workloads running on
HPC centers. But similar funcationalities and services may be just what our proposed ML service
framework needs.

3 Proposed Approach

We envision the scalable distributed ML service framework will be able to provide end-to-
end services including data ingestion, data preparation, model buidling and training and model
deployment, as illustrated in Figure 1. To realize this, as mentioned in Section 1, challenges
related to portability, scalability, agility and cyber security need to be addressed. We propose to
set up an integrated software and hardware test bed through the Institutional Cluster resources
at BNL, where different CPU and GPU architectures are available for the study of portability,
interconnected compute nodes are available for the scalability investigation, and we will work
with them to develop and test user authentication methods for the ML service.

There are three key components to the ML service framework: user interface, intermediate
provisioning and backend execution, which we discuss in more detail below:

• User Interface (UI). To make it easy for the potential users to use the ML service, an intu-
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Figure 1: Illustration of the proposed ML service framework.

itive and fast user interface is essential. This is where users can register the ML workload-
s/functions that need to be processed. There are several candidates for the user interface:
text-based, graphics-based and web-based. The text-based UI can be a set of scripts that
the users modify. The graphics-based UI will likely not work well in this situation and will
not be considered a top choice. Web-based UI such as Jupyter Notebook has been widely
adopted in scientific data analysis, in particular with applications written in Python, and we
will explore its functionalities in support of the ML service framework. The current Jupyter-
Hub service provided by the BNL Scientific Data and Computing Center (SDCC) may make
it a suitable choice for the ML service we are proposing here. It is also being adopted at
other supercomputing centers such as NERSC, and will make it possible for our ML service
framework to be available on other data centers.

• Intermediate Provisioning. After the user requests are received through the UI, a server,
likely located locally at the BNL data center, will perform the provisioning and orchestration
of the workflows to be deployed to the remote computing units – which we will call the
backend of the ML service. The intermediate server will handle the Data Ingestion and
Data Preparation stages of the workflow as shown in Figure 1. The data source could be on
the user’s local computer, in the cloud or remotely in the target data center. Depending on
the workflows and the data source, the data may or may not need to be preprocessed and
transferred over to the remote backend. For this component, the key research direction is to
investigate and develop a tool that is adaptive to the various scenarios of the ML workflows.
For simple, computational inexpensive, workflows, the ML tasks may be performed directly
on the intermediate server (with the user’s permission). To enable this, performance analysis
of the workflows will need to be implemented. Here input on requirements and types of
workflows from the applications is crucial, which we will survey at the beginning of the
project, and periodically throughout the project to keep up with the development of the ML
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user community.

• Backend Execution. The ML service backend will perform the heavy-lifting of the frame-
work where computation-intensive tasks such as ML model training and hyperparameter
optimization will take place. The portability, scalabity and agility aspects of the ML service
framework mostly pertain to this component.

– Portability. Given that the software environments and hardware architectures may vary
between different backends (i.e. different data centers), the most portable solution is
to dispatch the workflows in a containerized environment with portable ML frame-
works. The challenge is, how do we turn simple user requests, likely in just a few high-
level functions, into an executable that can be run on the compute nodes, likely with
GPUs? Here is where the FaaS paradigm will be investigated, to see if user requests can
be executed efficiently and portably on different architectures. The current approach,
which we call "direct optimization", requires deep changes within each framework to
improve the training performance for each hardware backend (CPUs, GPUs, FPGAs,
ASICs). These hardware diverge in terms of memory organization and, compute func-
tional units. CPU, GPU, and TPU-like accelerators require different on-chip memory
architectures and compute primitives. This divergence must be addressed when gener-
ating optimized code.

– Scalability. For distributed ML training, existing frameworks such as Apache Spark,
Hovorod and MPI_Learn may be employed. However, the suitability and scalability
of each framework may depend on the target platform and the applications. Fast con-
vergence of ML algorithms on large HPC machines need better communication model,
synchronization effort and selection of parameters for the algorithms. This requires
scanning huge search space to find the best solution. Currently, no tools are available
that can help the HEP physicists to optimize the ML algorithms for the target computing
resources. We will develop a set of tools that can analyze the performance characteris-
tics of the applications and model the outcome on different platforms, to help develop
the scalable execution of the machine learning workloads across a wide spectrum of
computing resources.

– Agility. Existing distributed workflow management tools such as PanDA [9] and Parsl [10]
will be studied to see if and how they can be used to facilitate fast and flexible executa-
tion of the ML workflows on the backend. Since these workflow systems are designed
for more traditional computing workflows, theirs features and gaps for ML workflows
will be investigated. An Application Programming Interface (API) will need to be de-
fined to facilitate the interaction of the workflow management system with the user ML
applications.

Throughout the project, we will use ATLAS and DUNE ML applications as driving examples,
such as the ATLAS FastCaloGAN training mentioned previously. Performance benchmarks (in
terms of time to solution, coding efforts and other metrics) will be documented periodically to
track the progress of the project. We note that this is not a pure software development project, as
there are still many unknowns as to how such an ML service framework should be designed and
developed. The focus of the project is to investigate different technologies available to us, and find
the best path towards a scalable and distributed machine learning service framework through an
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application-framework codesign approach. The outcome of the project will be the evaluation of
different technologies as mentioned above along with a set of prototype tools developed that can
be used to guide the design and development of a production-level ML service framework in the
future.

4 Milestones, Deliverables and Success Criteria

Year 1: Testbed set up. Investigate single-node portability solutions with containerization and
portable ML frameworks. Initial study of the workflow management systems to help define APIs.

Year 2: Investigate scalability solutions, and develop performance analysis and modeling tools
for distributed ML.

Year 3: Investigate ways to integrate portability and scalability components with real-time
workload management.

Deliverables: Evaluation results of different technologies relevant to the project; software tools
for scalable distributed machine learning services;

Success Criteria: Working prototype to be deployed on the BNL IC testbed 1 At least 10x
performance improvement for the FastCaloGAN benchmark use case.

5 Project Team

Our multidisciplinary team will consist of scientific ML users/developers (led by Viren/We-
naus) and HPC/ML scientists and engineers (led by Lin), with collaborators from EIC (Aschenauer)
to help define the application requirements. One postdoc at CSI will work with Lin to investigate
and develop the ML service framework, with 1/2 of a postdoc at NPPS working with Viren and
Wenaus to test and validate the developed tools. We have long-standing fruitful collaborations
in other projects [11–13], and will make a great team. Our intimate understanding of the data-
intensive ML application needs (Viren, Wenaus), and expertise in performance portable HPC (Lin)
and distributed computing (Viren, Wenaus) will help ensure the project’s success.

6 Impact and Return on Investment

Our research will lead to the successful development of a hardware and application agnostic
distributed ML service at scale. This will be an enabler for expanding scientific creativity in AI/ML
applications towards models of a scale and complexity otherwise impractical, or with prohibitive
development/training time requirements. The project aligns with and is an enabler for BNL’s
strategic growth plan to use AI/ML to create solutions to experiment-driven computing challenges
across the Laboratory, leveraging BNL and wider computing resources to do so.

The development and applications of ML technologies have been the focus of several recent
DOE funding calls, including the Artificial Intelligence, Machine Learning and Data Analytics

Codesign call from ASCR in 2019, and the Data, Artificial Intelligence, and Machine Learning

at DOE Scientific User Facilities call sponsored by several DOE offices in 2020 and the recent
Integrated Computational and Data Infrastructure for Scientific Discovery call from ASCR. These
funding opportunities typically give awards ranging from $500,000/year to $2,000,000/year. This
can also be a good topic for Computational Partnership programs such as SciDAC. Our research
will place us at a strong position to participate in future similar funding calls.

1While the eventual goal of the ML service is to have it deployed at different computing centers, realizing it will
require collaboration and support of the target computing centers. We have a close relationship with SDCC at BNL,
making it more realistic to have the service deployed at BNL IC for the LDRD.
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• PTMP: ProtoDUNE Trigger Message Passing system, a distributed, asynchronous message passing
system with included application to provide self-triggering the ProtoDUNE LArTPC detector.

• ZIO: General purpose toolkit for developing asynchronous, self-agregating distributed systems. Applied
to Wire-Cell Toolkit it provides multi-producer/multi-consumer asynchronous HDF5 I/O and expected
to succeed PTMP for DUNE Far Detector DAQ.

• LARF: A boundary-element method solver for 3D drift and weighting fields required for simulating
large LArTPC and similar detectors.

• GeGeDe Constructive solid geometry authoring system to develop configurable parameterized detector
descriptions are used to generate geometry for ROOT and Geant4 and with experimental support for
FreeCAD.

• Daya Bay O✏ine Software: primary on geometry, simulation, file I/O, Gaudi framework adaptation,
build system, documentation.

Select Recent Publications

• “Three-dimensional Imaging for Large LArTPCs”: Qian, Zhang, Viren, Diwan, JINST, 13 #05, 2018.

• “Ionization electron signal processing in single phase LArTPCs. Part I. Algorithm Description and
quantitative evaluation with MicroBooNE simulation”: MicroBooNE collaboration, JINST 13 #07,
2017

1
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1. EQUIPMENT (Reference: DOE Order 413.2C for guidance on equipment restrictions)
Will LDRD funding be used to purchase equipment? 

If ³YeV,´ SURYLde cRVW aQd deVcULSWLRQ Rf eTXLSPeQW 
Year 1 - $10,000 to purchase a GPU server to be used as the 
provisioning server.  

Year 2 - $ 

Year 3 - $ 

Description:       

2. HUMAN SUBJECTS (Reference: DOE Order 443.1)
Are human subjects involved from BNL or a collaborating institution? 

         Human Subjects is defined as ³A living individual from whom an 
investigator obtains either (1) data about that individual through 
intervention or interaction with the individual, or (2) identifiable, 
private information about that individual´. 

If yes, attach copy of the current Institutional Review Board 
Approval and Informed Consent Form from BNL and/or 
collaborating institution. Y/N 

Y/N_Y_ 

N 

3. VERTEBRATE ANIMALS
Are live, vertebrate animals involved? 

Y/N N 
If yes, attach copy of aSSURYaO fURP BNL¶V Institutional Animal 
Care and Use Committee. Y/N 

4. NEPA REVIEW
Are the activities proposed similar to those now carried out in the  
Department/Division which have been previously reviewed for 
potential environmental impacts and compliance with federal, state, 
ORcaO UXOeV aQd UegXOaWLRQV, aQd BNL¶V EQYLURQPeQW, SafeW\, aQd 
Health Standards?  (Therefore, if funded, proposed activities would 
require no additional environmental evaluation.) Y/N Y 

If no, has a NEPA review been completed in accordance with 
the National Environmental Policy Act (NEPA) and Cultural 
Resources Evaluations Subject Area and the results 
documented? Y/N 

(Note: If a NEPA review has not been completed, submit a 
copy of the work proposal to the BNL NEPA Coordinator for 
review. No work may commence until the review is completed 
and documented.) 

5. ES&H CONSIDERATIONS
Does the proposal provide sufficient funding for appropriate 
decommissioning of the research space when the experiment is 
complete? Y/N Y 
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Is there an available waste disposal path for project wastes throughout 
the course of the experiment? Y/N Y 

Is funding available to properly dispose of project wastes throughout 
the course of the experiment? Y/N Y 

Are biohazards involved in the proposed work?  If yes, attach a current 
copy of approval from the Institutional Biosafety Committee. Y/N N 

Can the proposed work be carried out within the existing safety 
envelope of the facility (Facility Use Agreement, Nuclear Facility 
Authorization Agreement, Accelerator Safety Envelope, etc.) in which 
it will be performed? Y/N Y 

If no, attach a statement indicating what has to be done and how 
modifications will be funded to prepare the facility to accept the 
work.  

6. TYPE OF WORK Select Basic, Applied or Development  Basic 

7. ALIGNMENT WITH THE LABORATORY PRIORITIES

This proposal supports 4. Artificial Intelligence and Data Science, 5. High Energy Physics and 
1. Nuclear Physics. In particular, WhLV SURSRVaO addUeVVeV Whe ³MLgUaWLRQ WR OSeUaWLRQ´ chaOOeQge
in the priority area of Discovery Science Driven by Human-AI-Facility Integration.
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8. POTENTIAL FUTURE FUNDING
DOE ASCR, DOE HEP, DOE NP and potentially DOE BES/BER.  
We anticipate that funding opportunities in this area will arise frequently in the next few 
years gLYeQ DOE¶V ePShaVLV RQ VcLeQWLfLc PachLQe OeaUQLQg aQd aUWLfLcLaO LQWeOOLgeQce. FRU 
us to be competitive, we will likely be in a good position to respond to such funding 
opportunities in Year 2 and beyond, with the expectation that we will have some 
innovations that can be competitive then. 

9. BUDGET JUSTIFICATION
We request to have 0.2 FTE PI time each year for Lin, 0.1 FTE PI time each year for 
Viren. Wenaus will devote 10% of his time on this project with other related funding. 1 
CSI PD will work on the main research and development tasks, while ½ NPP PD will work 
on supplying application use cases and testing, both expected to start on June 1, 2021. 
Computer purchase ($5000 each) and relocation expenses ($5000 each) for the PD new 
hires in the first year. A GPU server purchase (at a cost of ~$10,000) in the first year is 
requested to serve as the intermediate provisioning host. Funds are requested for 
computing time on the BNL Institutional Cluster for approximately 1 node*year. Moderate 
travel (if allowed by DOE and federal guidelines) to disseminate results at conferences and 
workshops.  

10. NAME OF SUGGESTED BNL REVIEWERS

x Shinjae Yoo (CSI)
x Alexei Klimentov (NPP)
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APPROVALS (NPP) 

 6XVDQ�0��3DQNRZVNL 
Business Operations Manager 

Department Chair/Division Manager 

Associate Laboratory  Director for 
Nuclear and Particle Physics

 +RQJ�0D 

      +DL\DQ�*DR       
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APPROVALS (CSI) 

          *UDFH�*LXIIUH 
Business Operations Manager 

Department Chair/Division Manager

 

Computational Science Initiative 
Director  

 )UDQN�$OH[DQGHU 

      .HUVWLQ�.OHHVH        

medaglia
Stamp



Distributed Machine Learning
(FY22 Call TYPE A)

T. Wenaus / B. Viren / M. Lin
Resource
Category DESCRIPTION FY22 FY23 FY24 FY25

050 Salary - Scientific 7,457 21,965 24,087 17,477
051 Salary - Research Assoc 20,038 51,634 53,222 37,788
050 Salary - Professional 0 0 0 0
050 Salary -Technical 0 0 0 0
050 Salary - Management & Admin. 0 0 0 0

Total FTEs 0.60 1.80 1.80 1.26
  TOTAL SALARY/WAGE & FRINGE 27,494 73,599 77,309 55,264

201 RECHARGE LABOR - CSI 61,134 202,517 202,517 139,229
  TOTAL PURCHASED LABOR 61,134 202,517 202,517 139,229

645 Computing Recharge Services 1,000 2,062 2,126 2,192
  TOTAL OTHER 1,000 2,062 2,126 2,192

290 Domestic Travel 2,000 5,000 5,000 5,000
various Material Purchases 10,000 2,000 2,000 1,000

  TOTAL MSTC 12,000 7,000 7,000 6,000

170 Relocation Expense 10,000
271 Communications

  TOTAL COM/MISC 10,000 0 0 0

212 Service Contracts/Publications 1,000 1,000 1,000
0 0 0 0

  TOTAL SPECIAL PURCHASES 0 1,000 1,000 1,000

312/314 Capital Equip - Low Value 10,000 0 0 0
  TOTAL EQUIPMENT 10,000 0 0 0

250 Electric 0 0 0 0
  TOTAL ELECTRIC 0 0 0 0

480 Space
  TOTAL SPACE 0 0 0 0

  TOTAL DIRECT COSTS 121,628 286,178 289,952 203,685

251 Electric Distributed (Electric Power Burden) 220 589 618 442
700/701/481 Organizational Burden 3,052 8,169 8,581 6,134

 TOTAL ORGANIZATIONAL BURDEN 3,272 8,758 9,200 6,576

745 Procurement (Material Handling) 1,540 560 560 490
710 G&A Burden 0 0 0 0
720 Common Support 45,560 125,503 127,288 89,249
722 Safeguards & Security Assess 0 0 0 0
746 Adjs to Procurement Burden

 TOTAL LABORATORY BURDEN 47,100 126,063 127,848 89,739

705 LDRD Burden 0 0 0 0
TOTAL PROGRAM COSTS 172,000 421,000 427,000 300,000 1,320,000
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