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Artificial Intelligence and Machine Learning (AI/ML) applications are in a period of rapid growth and
innovation in High Energy Physics (HEP), on the foundation of a powerful and rapidly evolving toolset.
Access to much larger scale processing resources than is today’s practice could greatly accelerate developing
and refining AI/ML applications by shortening optimization and training latencies by orders of magnitude,
enabling a transformative expansion of scientific creativity and innovation in conceiving and developing
AI/ML applications. The DOE’s Advanced Scientific Computing Advisory Committee produced a report
in 2020 addressing priority research directions which for HEP cited as the first challenge, Create usable
tools for large-scale distributed training and optimization of ML models to enable physicists to scale up the
complexity of their models by several orders of magnitude above the current “laptop-size”. Addressing this
is the central objective of this proposal.

This proposal assembles a team of scientific Workflow/Workload Management System (WMS) develop-
ers, computational scientists and domain scientists to work together on building a system providing easy,
uniform access to diverse large scale computing resources including regional to global grids, HPCs and
academic and commercial clouds. Our WMS team has world leading expertise and capability as the devel-
opers of the PanDA workload management system. Our domain science team brings together researchers
experienced in AI/ML from ATLAS, DUNE, Belle II and the Jefferson Lab experimental program. Our
computational scientists are experts in leveraging the largest HPC platforms, which we will integrate using
a new Function as a Service capability that will integrate very well with PanDA. The delivered software will
offer the community a low threshold of entry to a service that scales across geographically distributed sites
and platform types, opening access to the widest array of processing resources accessible at a given time,
while fully supporting the extensive AI/ML toolset researchers already use within sites.

An example of the transformative impact large scale resources can have is in ML-based per-event likeli-
hood analysis. With highly scalable resources, very large ensembles of deep and wide NNs can be trained
to provide for the first time an unbiased approximation of the exact likelihood ratio for large datasets such
as those of the LHC, with large scale NNs also describing the effect of systematic uncertainties. This use
case and several others drawn from our domain science teams are described in the proposal.

This proposal focuses its investment primarily upon supporting early career researchers (mostly postdocs)
embedded in experimental teams working on AI/ML enabled analysis, and working with the (existing and
independently funded) WMS team to bring the emerging large scale AI/ML services to bear on their re-
search. A primary objective for the project is that it be a strong contributor to training an early career work
force at the leading edge of large scale HEP AI/ML applications.

The project would deliver an operating large scale ML service instance available to the HEP community
as part of the HEP AI/ML ecosystem, sited at BNL and easily accessible via federated login, packaged and
documented such that interested parties can bring up their own instances. The service would be able to use
resources on DOE HPCs/LCFs, commercial clouds (Google, Amazon, possibly NVIDIA), and a flexible
array of cluster and grid resources. The scalability target is a 75k concurrency level for a single workflow.
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1 Introduction

Artificial Intelligence and Machine Learning (AI/ML) applications are in a period of rapid growth and
innovation in High Energy Physics (HEP) as in related fields and the wider world, on the foundation of a
powerful and rapidly evolving open source toolset. Developing applications typically takes place on the
desktop or local cluster, sometimes facilitated by modestly scaled GPU acceleration. Ready access to large
scale resources could greatly accelerate developing and refining current applications that require substantial
processing, by shortening optimization and training latencies by orders of magnitude. More importantly,
such access could enable a transformative expansion of scientific creativity and innovation in conceiving
and developing AI/ML applications. Lifting the practical constraints of working at the scale of owned/local
resources can unshackle not just the applications but of conceptualizing them in the first place.

This is particularly true of HEP, with its large and complex datasets and corresponding processing de-
mands, today and even more so in the future with the advent of the HL-LHC. The DOE’s Advanced Sci-
entific Computing Advisory Committee (ASCAC) empanelled a Subcommittee on AI/ML, Data-intensive
Science and High-Performance Computing that produced a report in 2020 [1] addressing priority research
directions. For HEP, the first item on the list of challenges (page 27) is Create usable tools for large-scale
distributed training and optimization of ML models to enable physicists to scale up the complexity of their
models by several orders of magnitude above the current “laptop-size.”. Addressing this top priority HEP
AI/ML ecosystem research challenge is the central objective of this proposal.

This proposal assembles a team of scientific Workflow/Workload Management System (WMS) develop-
ers, computational scientists and domain scientists to work together on building a transformative contri-
bution to the HEP AI/ML ecosystem offering analysts easy, proven, uniform access to diverse large scale
computing resources, including regional to global grids, HPCs and academic and commercial clouds. Our
WMS team has world leading expertise and capability in scientific workflow management at the largest
scales, built over the last 15 years in developing the PanDA [2] workload management system and the
ecosystem around it, recently extending to complex workflows including AI/ML. Our domain science team
brings together researchers experienced in AI/ML who have applications today as well as the vision for
applications in the future for which the large scale ML services developed through this proposal will be
transformative. Our computational scientists are experts in leveraging the largest HPC platforms, particu-
larly DOE’s Leadership Computing Facilities (LCFs), the integration of which will complete the spectrum
of large scale resources made available in the infrastructure we develop.

This proposal focuses its investment and added value primarily upon supporting early career researchers
— postdocs and graduate students — who will work within their experimental teams on AI/ML enabled anal-
ysis, and with the WMS team on bringing the emerging large scale AI/ML services to bear on their research.
Their work will tightly couple the WMS development to the real science needs throughout the development
process and across several experiments, ensuring that the project deliverables constitute the widely applica-
ble HEP AI/ML ecosystem extension we aim for. An important objective for the project is that it be a strong
contributor to building our future workforce and expertise base.

In our WMS objectives, with modest investment we will build on the existing PanDA workload man-
agement system and its ecosystem including the Intelligent Data Delivery Service (iDDS) [3] that already
delivers key functionalities at scale for the ATLAS experiment. We will extend the functionality to support
the full AI/ML development process: conceptualization, rapid prototyping, iterative development, training,
optimization and application in analysis and production. Development will proceed concurrently with ap-
plying the available functionality and refining it iteratively, through collaboration between our WMS and
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domain science teams. The delivered software will offer AI/ML developers and users a low threshold of
entry to a tool suite emphasizing usability and scalability, with powerful automation and monitoring tools
offering to the researcher the widest array of processing resources accessible at a given time.

We focus on delivering highly scalable AI/ML services because we anticipate a proliferation of HEP
AI/ML use cases for large scale services throughout the ecosystem. The domain scientists on our team
are at the leading edge of this trend, and our early career work force will be trained at the intersection of
large scale HEP AI/ML applications and the services we develop that are their enablers. For example in
analysis, ML has to date been mostly limited to training classifiers to select data that are then analyzed with
traditional statistical methods. However the best use of ML methods would be to directly approximate the
exact likelihood ratio. A description of the exact likelihood ratio would build the test statistic per-event,
extracting all the available information in our datasets. Such ML based per-event likelihoods have not been
used to date in a real HEP analysis because the processing demands are much too great. With highly scalable
resources, very large ensembles of deep and wide NNs can be trained to provide an unbiased approximation
of the exact likelihood ratio, including additional NNs to describe the effect of systematic uncertainties.
Through the proposed project we will implement these ideas in the ATLAS H—ZZ—4l analysis in the
search for off-shell production, where preliminary results obtained using Google Cloud Platform resources
show a result that is four times more sensitive than traditional methods [4].

This example encompasses the key features of our proposed research. We identify a domain science
application for which highly scalable AI/ML resources would be transformative in extending the scientific
reach of our experiments. Through a collaboration between our core WMS experts and the early career
researchers supported through this project who work both with us and the experiment’s analysis teams, we
establish a real world testbed applying the project’s tool set to the analysis problem, iteratively refining both
in the course of this research, towards end deliverables of a tool set of demonstrated capability and young
researchers versed in the latest future-directed techniques.

The objectives of the project are summarized concisely in Section 2. Section 3 presents the proposed
research and methods, organized into Task Areas covering core infrastructure, the services we’ll build, and
how we’ll apply them in the experiments, largely through the engagement of our postdoc team. Participating
experiments bringing their expertise, use cases, and preparedness to host and train the project’s early career
work force include ATLAS, DUNE, Belle I, and the Jefferson Lab experimental program. We also summa-
rize and highlight the impact on the HEP AI/ML ecosystem that this proposal targets. We describe our plans
for a primary objective of the project, building early career expertise. In Section 4 we summarize the high
level deliverables constituting the end products of the project. Finally we conclude the proposal with a spe-
cific and detailed timetable of activities in Section 5, indicating where we apply on-project effort and where
we leverage off-project effort and resources, and in Section 5 we summarize the roles and responsibilities of
participants and the personnel planned to be supported by the project.

The project funding we request is entirely for personnel (with a small travel component), with an emphasis
on early career scientists embedded in experiment teams, and totalling slightly more than $1M/year for the
three year duration of the project. We have come to the effort profile and funding level through a bottom
up process of building our team of technical experts and experiment participants, planning where we can
leverage externally supported effort and where we can most effectively apply supported effort towards our
objectives — including prominently, training early career scientists. The PI will be Torre Wenaus (leader of
BNL’s Nuclear and Particle Physics Software Group), with participation from ATLAS, Belle II and DUNE
collaborators at BNL; AI/ML and HPC experts from BNL’s Computational Science Initiative (CSI); ATLAS
groups at UT Arlington, U Wisconsin Madison, U Mass Amherst, and ANL; and scientists at Jefferson Lab
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pursuing AI/ML applications in their experimental programs.

The PI will take a coordinating role in collecting use cases and establishing a development program to
address them. Postdocs/students will investigate use cases, developing testbeds using existing infrastructure
in the first year and the evolved software in years two and three. The evolution will be informed by testbed
experience, with the development work carried out in a collaboration between project-supported personnel
and experts supported outside the project (the core PanDA/iDDS team, AI/ML professionals and science
domain experts).

2 Project Objectives

1. Apply our team’s world leading expertise and capability in scientific workflow management at the
largest scales to offer ML analysts easy and uniform access to diverse large scale computing resources.

2. By enabling ready access to large scale ML processing resources, accelerate the iterative develop-
ment and refinement process for ML applications by shortening optimization and training latencies
by orders of magnitude.

3. Empower researchers employing AI/ML towards a transformative expansion of scientific creativity
and innovation in conceiving and developing AI/ML applications, by making applications and models
of much greater depth, complexity and power tractable.

4. Leverage work on advanced workflows and associated high quality user interfaces, both existing and
underway in our experiment teams, towards creating a suite of experiment agnostic tools and services
for scalable ML.

5. Leverage and add value to the powerful existing open source AI/ML tool set in the domain of dis-
tributed, multi-facility large scale applications.

6. Because of the existing capability we can draw on, this project can achieve its objectives by investing
primarily in the support of early career researchers (mostly postdocs) to work on applying existing
core infrastructure in real world AI/ML application testbeds.

7. By applying project resources primarily to the training of young postdocs in large scale AI/ML ap-
plications, working closely both ML services developers and experiment teams working actively on
physics analysis, we will make this training a primary objective and deliverable of the project. The
strong off-project leveraging of existing experts in our experiment teams makes this realizable.

8. The ultimate objective and deliverable of the project is a demonstrated experiment-agnostic capability,
through several at-scale testbeds across several experiments, of a suite of scalable ML services that
can be applied throughout the HEP AI/ML ecosystem.

3 Proposed Research and Methods

In this section we present details of our proposed research and methods. We organize our research activities
into four main Task Areas (TAs) as follows.

* TA1: Core infrastructure: Development of workflow/workload management software in support of
large scale ML services

* TA2: Platform support: Extending and adapting ML services and workflows to diverse platforms
including HPCs/LCFs, commercial clouds, and accelerator-equipped clusters and grids
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* TA3: Experiment agnostic large scale ML services: Developing, generalizing, scaling, and hard-
ening of experiment agnostic ML services on the core infrastructure foundation.

* TA4: Experiment applications: Demonstrator applications in participating experiments utilizing
large scale ML services

Our proposed plans and methods for TA1 and TA2 involve primarily core software experts from the
PanDA and iDDS teams, together with the CSI team with their HPC expertise, and are presented in Sec-
tion 3.1 and Section 3.2. TA3 involves both core software experts and scientists from our experiment teams
developing AI/ML applications, and is presented in Section 3.3. TA4 is the principal focus of participat-
ing scientists on our experiment teams, particularly the early-stage investigators who make up most of the
supported effort of the project, and is presented in Section 3.4.

3.1 TAI1: Core Infrastructure
3.1.1 PanDA and iDDS

Our proposal has the ambitious objective of adding transformative value to the existing AI/ML tool set
available within the HEP AI/ML ecosystem [5], by providing highly scalable ML services across diverse
physically distributed computing facilities, with low barrier of entry and high usability. Today’s ecosystem
includes tools enabling large scale use of individual facilities, but does not include tools to integrate multiple
facilities for the use of one AI/ML application that can benefit from the integrated scale and the dynamic
availability of diverse resources. This is where our proposal adds value: adding a cross-facility capability to
scale up workflows, while within individual facilities they can leverage the full existing tool set.

What makes this objective attainable is the strong leverage and technology base we have in the PanDA
software stack and ecosystem. PanDA had its inception in 2005 focused on the needs of ATLAS. Since its
adoption ATLAS-wide a few years later, it has been in continuous production for all managed workflows as
well as individual analysis, benefiting from initial choices in architecture and technology stack that remain
best in class for distributed services (database backed web services implemented in Python with REST-like
distributed APIs). The stability and longevity of this WMS foundation has enabled ATLAS and the PanDA
team to continuously refine, extend and modernize the capabilities and use cases the system covers, with
high efficiency in terms of effort and cost thanks to a small and stable core team of expert developers. It
has also enabled extending PanDA’s application, with modest incremental effort, to experiments and use
cases beyond ATLAS. The 2012-2015 DOE ASCR-supported BigPanDA project built on ATLAS PanDA to
provide experiment-agnostic capability targeting HPCs and DOE LCFs. This effort brought OLCEF Titan into
PanDA and ATLAS, and led to OLCF extending PanDA Titan usage to other science domains. BigPanDA
was also instrumental in the COMPASS experiment at the CERN SPS accelerator adopting PanDA, and in
establishing a testbed integration of PanDA in the LSST’s workflow management system. BigPanDA also
seeded collaborations with Google and Amazon.

This record of leveraging and diversifying PanDA beyond ATLAS is recently bearing fruit in ways ap-
plicable to the AI/ML ecosystem. The HPC/LCF directed efforts led to the development of the PanDA
Event Service enabling highly efficient utilization of these platforms, followed by the development of the
Intelligent Data Delivery Service (iDDS) which provides experiment-agnostic capability for orchestrating
complex fine-grained workflows. In 2021 the Rubin Observatory adopted PanDA, a decision driven by
iDDS’s powerful workflow support and PanDA’s scalability. The complex workflow intrest in ATLAS, Ru-
bin and the NSF’s IRIS-HEP project (which joined in development of iDDS) led to applying PanDA/iDDS
complex workflow support to ATLAS AI/ML applications, which in turn is the foundation for this proposal.
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The iDDS service extends the workflow system with a fine-grained, dynamic responsiveness to complex
data driven workflows. The first iDDS use case, ATLAS’s "data carousel” [6], quickly demonstrated iDDS’s
utility and has been used in ATLAS production since 2020. The data carousel supports rapidly process-
ing staged data as it appears from tape such that it can be quickly unpinned and deleted, thus enabling the
sliding window of disk-resident data to be kept to a small fraction of the full tape-resident sample. This
is one of the important tools by which ATLAS is addressing the HL-LHC storage challenge. The second
production iDDS application is a foundation for this proposal, hyperparameter optimization (HPO), pro-
viding a fully automated HPO platform on top of geographically distributed resources. It is used with the
first ML application to reach production in the ATLAS fast simulation; the new AtlFast3 simulation that
began production in 2021 incorporates FastCaloGAN, discussed below. iDDS also supports a growing list
of complex analysis workflows from the ATLAS analysis community, including Monte Carlo toy based
confidence limits estimation (requiring multiple steps of grid scans, where current steps depend on previ-
ous steps), active learning (requiring complex logic between tasks in an analysis workflow), and end-to-end
production+analysis workflows including REANA integration.

While it is in ATLAS that these iDDS based workflows have been applied thus far, their application is
not limited to ATLAS, and through this proposal we aim to apply iDDS beyond ATLAS, as happened with
Rubin, and is underway with the sSPHENIX experiment at BNL’s Relativistic Heavy lon Collider (RHIC)
which has recently adopted PanDA/iDDS. PanDA with iDDS offers a powerful set of existing capabilities
we will leverage and build on in this proposal:

1) A distributed system able to operate transparently and coherently across heterogeneous resources.

2) Portability of development environments and applications.

3) Support for the full suite of open source AI/ML tools including those for utilizing large scale resources.
4) Convenient authentication supporting modern (OAuth2) and legacy (grid certificate) mechanisms.

5) Control, automation and monitoring systems that put the user in well informed control of the system.
6) Interactive latencies to support fast iterative development and quasi real-time applications.

7) A high quality user interface leveraging community tools, particularly the Python stack and Jupyter.

We have used these key attributes to implement support for large scale AI/ML workflows, currently in
ATLAS production in the FastCaloGAN component of ATLAS’s AtlFast3 [7] fast simulation discussed
below, and in analysis prototypes. Crucially for the tractability of this proposal and its moderate, postdoc-
directed workforce, our project will leverage the existing PanDA based capability and ongoing interest in
AI/ML workflows within ATLAS, but the project will not directly support this ongoing work. ATLAS has
long recognized that its own interests are well served by supporting generalization and wider use of its open
source software (Rucio [8], PanDA, and ACTS [9] are prominent examples in the HEP community).

The large scale AI/ML workflow capability in PanDA is built from experiment agnostic components and
can evolve to serve the HEP community ecosystem if supported to do so as this project proposes. (The
last support for generalizing PanDA beyond ATLAS was the ASCR BigPanDA project that ended in 2018.)
We propose to drive the development of an experiment and domain agnostic software stack by coupling
the existing and externally supported core development team to a postdoc-based workforce working with
multiple experiments and analysis teams to develop real-world testbeds that will establish both the generality
and the capability of the core infrastructure. The mature state of the infrastructure to be leveraged, and the
synergy with parallel efforts within ATLAS on expanded AI/ML services and pseudo-interactive analysis,
make it realistic to attain this objective over the three year duration of the project.
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3.1.2 Resource-side Services

Resource-side services that manage the interaction of workload and data management systems with the
resources of a facility are important mechanisms to provide uniform capability across diverse resources, and
to encapsulate their differences in order to present as simple and uniform interface as possible to higher
levels of the system. Two important such components in PanDA are the PanDA Pilot [10], and the Harvester
edge service [11, 12]. On a conventional system such as a batch scheduler based system, the pilot is the
batch job that once running acquires payloads from PanDA for execution, encapsulating and insulating from
PanDA the dynamic and highly varied worker node environment. Similarly at the level of an entire facility,
the Harvester service encapsulates the mechanisms by which processing resources are acquired and utilized
(e.g. by submitting pilots to batch queues), storage is managed and results are returned, and so on. Across
most scientific computing facilities the similarities are greater than the differences, and tailoring resource-
side services to a particular facility is straightforward. However for some, most notably DOE HPCs and
particularly LCFs, every facility is substantially unique with respect to others, and implementing resource-
side services like the pilot and Harvester is a highly involved and effort-intensive task.

DOE HPCs/LCFs are large resources that we want our software and our users to be able to effectively
leverage; in fact whether they can do so will be an important success metric of the project. Future generations
of these facilities are expected to have AI/ML as a principal application target. Accordingly, developing
capable, effort-efficient mechanisms to integrate these machines is an important project task. We identify in
particular the rapidly evolving Function as a Service (FaaS) area as a possible solution, and the funcX [13]
project in particular. FuncX is a high-performance FaaS system to orchestrate scientific workloads across
heterogeneous resources, from laptops to clusters to LCFs. It is an extension of Parsl [14], a Python parallel
programming toolkit. FuncX operates as a persistent service serving as a gateway to route workloads to
compute nodes. Users authenticate using standard OAuth?2 and register their workloads with the funcX client
which delivers them to the remote target endpoint asynchronously, and receives results back. The funcX
team anticipates making it available on DOE HPCs including LCFs. Given the similarities in architecture
and technology between PanDA and Parsl/funcX, integrating the two (via a Harvester plugin) should be
straightforward, such that funcX provides a secure, capable access path for PanDA workloads to reach
HPC/LCEF platforms and be executed by a trusted locally resident service. This core task of interfacing to
HPCs and LCFs, particularly via FaaS and by exploring Parsl/funcX, will be a focus particularly of our CSI
based team of experts on HPCs, AI/ML and the application of AI/ML on HPCs.

3.2 TAZ2: Platform Support

A principal objective of the proposed project is to support multiple platforms and facilities for large scale
AI/ML workflows, abstracting the details and complexities away from users as much as possible. A sub-
mitted user workflow may run on some combination of local cluster, grid, cloud and/or HPC resources
depending on workflow requirements and dynamic availability of resources. There are three key layers and
components involved: a friendly User Interface (UI) at the front end that abstracts away complexity while
providing needed system comprehension, control and diagnostic capability; the intermediate provisioning
layer that mates submitted workflows with the resources to execute them; and the back end execution envi-
ronment(s) where particular platforms and facilities meet the workflow management infrastructure.

The UI will use Jupyter notebook technology, as a widely adopted choice in scientific data analysis includ-
ing AI/ML, particularly suited to applications written in Python. PanDA (itself written in Python) has been
integrated with Jupyter as a highly capable user front end. Several of our participating institutes offer and/or
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extensively use JupyterHub services, such as those provided by the BNL Scientific Data and Computing
Center (SDCC), JLab and other National Laboratories and supercomputing centers, including NERSC. This
will facilitate access for our ML service framework to these data centers.

Once workflow submissions are received through the UI, an intermediate provisioning layer performs
the matchmaking between user request and available resources. Typically this is performed by PanDA and
iDDS, with PanDA managing matchmaking and iDDS the granular execution of the workflow. Efficient
execution requires intelligent decision making on execution environment even at the fine-grained level;
e.g. subcomponents of the workflow may be sufficiently light in their processing demands but heavy in
their potential latency contributions that they are best run on local resources (PanDA/iDDS includes the
capability for such decision making). Performance analysis of the workflows will need to be implemented
in order to automate workflow optimization. Exploring and evaluating a wide sampling of AI/ML workflows
and use cases will be important to inform this optimization; this will be provided through the participation
of many experiment teams, bringing their applications and use cases, in this proposal. Data handling is a
further aspect that can have strong platform dependencies, particularly on novel platforms. We expect to
leverage PanDA’s tight integration with the Rucio distributed data management system, and Rucio’s broad
application in HEP, to ameliorate data handling issues. The provisioning services reside at a single location,
likely to be the BNL Scientific Data and Computing Center (SDCC).

Particular features and unique complexities of platforms are addressed in the back end execution layer.
An advantage of building on PanDA is that experience exists with virtually all platform types that will be
encountered. A current exception is DOE LCFs; as discussed in Section 3.1.2 we will direct dedicated effort
there. The ML service back end will perform the heavy lifting of the services where computation-intensive
tasks such as ML model training and hyperparameter optimization will take place. Important portability and
scalability aspects of the ML service framework pertain to the back end execution layer component.

* Portability. Given that the software environments and hardware architectures may vary between dif-
ferent back ends, the most portable solution is to dispatch the workflows in a containerized environ-
ment with portable ML frameworks. The challenge is, how do we turn simple user requests, likely in
just a few high-level functions, into an executable that can be run on the compute nodes, likely with
GPUs? Here the FaaS paradigm can be an asset for executing efficiently and portably on different
architectures, by encapsulating and optimizing for the heterogeneity.

* Scalability. For distributed ML training, existing frameworks such as Apache Spark, Horovod and
MPI_Learn are often employed. However, the suitability and scalability of each framework may
depend on the target platform and the applications. Fast convergence of ML algorithms on large
HPC machines requires a good communication model, synchronization mechanism and parameter
selection methodology. The aim is to avoid scanning a huge search space to find the best solution.
Our team is working on active learning approaches to optimize and minimize the search space in
real-time. Building this capability into our scalable services, for AI/ML and other large scale analysis
workloads, will substantially enhance the attainable application scale. We will draw on CSI work
developing tools that can analyze the performance characteristics of applications and model their
outcomes on different platforms, to optimally utilize a wide spectrum of computing resources.

Among the platforms we target we have discussed the challenges of HPCs, requiring significant effort
particularly from our CSI team. The other platforms we will target are as follows. Information on specific
facilities the project will use is in Appendix 4.

* Clusters and Grids are the low hanging fruit among platforms. They encompass the most widely avail-
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able and easily supported (for a distributed computing system like PanDA) platform. New workflows
will often be implemented here first, and will always be ported here.

* HPCs and LCFs can be a complex special case, as discussed, but many HPCs (NSF facilities, most fa-
cilities in Europe) are not greatly more complicated than grid resources, and can be readily integrated
for a large throughput and capability return on investment.

* Google Compute Platform (GCP) will be an important platform as we can leverage the Google-
ATLAS R&D project. We can spike usage to large scales to test scalability. GCP has been a fertile
platform for exploratory R&D on analysis tools and approaches, including AI/ML.

* Amazon Web Services (AWS) will be important, drawing on the US ATLAS - Amazon collaboration.
Via this project AWS has been a productive platform for analysis and HL-LHC computing R&D
including AI/ML. Our PanDA team has a decade of experience using both Amazon and Google clouds.

* The NVIDIA HPC*AI Platform for HEP draws on NVIDIA’s recent interest and investments in sci-
entific data processing, ARM HPCs, and C++ and python ecosystems. Several of our long time DOE
Lab collaborators have joined and lead NVIDIA’s science program, giving us a valuable entry into
this promising development. Discussions on collaboration begin in June 2022.

3.3 TA3: Experiment Agnostic Large Scale ML Services

Widely used distributed deep learning frameworks such as Tensorflow [15], PyTorch [16], and Horovod [17]
use various strategies to distribute computation workloads over multiple GPUs, CPUs and compute nodes
within a single cluster or site. Users with large scale compute intensive applications that they want to
iteratively develop, train, optimize, refine and re-engineer over time are constrained in their ambitions and
scientific creativity by the resources available on individual accessible resources. We propose to develop
ecosystem-level services available to the community to submit machine learning workflows not just to single
sites but across multiple sites which may be geographically distributed and of different platform types. By
so doing we will greatly expand the scaling reach available to researchers, and lower the often substantial
barriers between developing applications in a small highly usable environment and moving them to large
scale resources with the capacity to process the deep and complex models that may give the greatest scientific
return.

In the preceding two sections describing TA1 and TA2 we have described the capabilities, software,
external leverage and platform expertise we can bring to bear on this objective. We describe here and address
in Task Area 3 what we plan to build on this foundation and deliver in terms of experiment agnostic large
scale ML services, tools and techniques. The following section describing TA4 is the heart of this proposal
and locus of the majority of the supported effort, the domain science applications empowered by these
services that will guide development, validate utility, and serve as examples and testbeds for community
use.

3.3.1 ML Model Training and Hyperparameter Optimization

Clear candidates for large scale ML services are ML model training and hyperparameter optimization
(HPO). HPO was the first ML service the PanDA/iDDS team implemented for ATLAS, and has been used
for various analyses [18-21]. Generally there are two approaches to implementing HPO, both of which are
supported by PanDA/iDDS. The most basic is to generate many hyperparameters in one round, randomly
or over a grid, and then evaluate all of them to select the one producing the best results. This can be in-
efficient because it can result in searching many hyperparameters that have no chance of being a solution.
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Another approach is to search hyperparameters iteratively, informed by previous results, such as Bayesian
Optimization. This requires a master application to collect results and, informed by previous results, trig-
ger successive rounds of hyperparameter generation and evaluation. The PanDA/iDDS team has developed
an HPO service on this basis to manage the search through hyperparameter generations, distributing ML
tasks to CPUs/GPUs on potentially geographically distributed resources to evaluate the hyperparameters.
This constitutes a powerful tool for physicists to develop sophisticated, processing- and data-intensive ML
applications, and will be an enabler for the scale of ML applications to be found at the HL-LHC.

In order to provide scalable cross-site capability for ML model training as well as HPO, we plan to extract
from the current HPO service the machinery to run training and enhance it as a platform allowing users
to manage ML models and run training interactively or in bulk, without the complexity of building and
maintaining the infrastructure on top of heterogeneous geographically-distributed resources. We will also
provide client tools and interfaces to help users to develop complex ML models including deep NNs and
inject them into the platform.

3.3.2 Simulation-Based Inference

Large scale ML services can be an enabler for a powerful approach to a mainstay of HEP analysis, likeli-
hood analysis. The traditional approach to hypothesis testing is to identify an observable sensitive to the
hypothesis, make bins and assign probabilities based on the frequency observed in simulation. However
the frequency of events in each bin can be very different from the actual probability of each event inside
that bin. ML methods are used in many analyses to mitigate this problem using classifiers that distinguish
signal from background processes; binned ML classifiers will naturally aggregate events that have similar
probability in the same bin. However in this approach as well there is information loss. The simulation-
based inference [22] approach takes a large and processing-intensive step further, by taking advantage of
the ability of AI/ML methods to learn the actual probability densities and build the analysis event by event,
extracting all the information available in the data collected. To date, no analysis at the LHC has been per-
formed with these methods because only small scale toy examples have been possible. We propose here to
build a highly scalable simulation-based inference capability able to support real-world analysis, exercise it
in a real analysis, and make it available to the community. This is described in detail in Section 3.4.1.

3.3.3 Evaluating Systematic Uncertainties

A big challenge in simulation-based inference is the description of the effect of systematic uncertainties on
the probability densities. In binned analyses, systematic uncertainties are described by the change in the
frequency of a bin when using a varied simulation. In the simulation-based inference literature, the most
common proposal is to describe systematic uncertainties by adding nuisance parameters as inputs to the
neural network that predicts the probability density. While parameterized neural networks might work in
principle, the application would require simulated samples that are orders of magnitude larger than those
currently available.

This proposal will develop a more viable approach for the description of systematic uncertainties by
extending the factorization between parameter of interest and nuisance parameters commonly assumed in
traditional analyses to the case of per-event analyses. In this approach, each systematic variation would be
interpreted as an additional probability density ratio estimation. In total, a typical analysis would require the
training and optimization of a few thousand neural networks, which requires accessible scalable infrastruc-
ture. But once the tools and infrastructure are available, every analysis that would benefit from per-event
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analysis could readily make a shift and become more powerful. This will be pursued as part of the program
described in Section 3.4.1.

3.3.4 Reinforcement Learning

A further example of the enabling value of large scale services is in Reinforcement Learning (RL). HEP has a
long history of using supervised learning, through boosted decision trees or other neural network techniques
for data analysis. Unsupervised learning has also made inroads in HEP in recent years. However, in order to
enable broader use and adoption of ML, we also need to enable the effective use of RL by making tools and
frameworks available and easy to use at the large processing scales they demand. Reinforcement Learning
can expand ML to many new use cases in HEP, since learning is not a separate step. PanDA with iDDS can
be a powerful enabler of new scientific results through adoption of RL on large scale distributed platforms.

3.3.5 Managing User Code

An essential element of the geographically distributed ML services we propose is provisioning the user’s
software, environment, and ML models where the processing will take place. We plan to develop a simple
and efficient mechanism to ship user codes to the cluster, grid, HPC and cloud resources where our ser-
vices operate. Machine learning software varies a great deal from user to user and evolves rapidly, making a
flexible and dynamically adaptable solution important. Our aim is to minimize the user’s exposure to the par-
ticulars of the worker nodes they utilize, which from our long PanDA experience is a substantial challenge.
Currently we are using containers to address this, but in the present implementation it remains difficult for
users to update their codes. In further development we will improve the user’s insulation from the container-
ization that encapsulates the remote environments, making it easier to transfer user codes smoothly from
development to operational environments.

In addition, an easy to user interface for container management will be developed. Currently users need to
create a new container when they have new code, and the work required to create a container is not familiar
and simple for many physicists. We plan to use Jupyter+Container to simplify the interface, making it much
more convenient for users to adapt their codes for remote running. Users in Jupyter (popular and familiar
among physicists) will be asked to select a container image as a base for their codes. When submitting jobs,
the user codes and the container tag information will be shipped to the PanDA+iDDS system. At remote
worker nodes, a container corresponding to the tag will be started to run the user codes.

3.3.6 Interactivity and User Interface

Empowering users in creating large scale AI/ML applications requires strong support for interactivity. We
will use Jupyter [23], popular across HEP and the AI/ML community, building on the Jupyter integra-
tion already implemented in PanDA/iDDS. We will also use Dask [24] to interactively provision scalable
resources on capable platforms. The user will request an interactive session on a resource for a desired
number of workers, and gain access via the Jupyter session when the resources are allocated. The Jupyter
ML services interface together with the PanDA monitor Ul can then be used to run, control, dynamically
monitor and visualize workflows, and collect and assess results. For cross-site workflows collecting the
results is a nontrivial requirement that is supported by our infrastructure. We will draw on community tools
such as MLFlow [25] in our visualization and monitoring support.
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3.4 TA4: Applying Large Scale ML Services in the Experiments

3.4.1 Practical per-event likelihood analysis using machine learning in ATLAS

Machine learning methods have become ubiquitous in experimental HEP, with ML methods used in simu-
lation, triggering, reconstruction and analysis. Generative models have found a natural application in HEP
simulations. Triggering has become the standard application in HEP for ML methods in embedded systems
with ASICs and FPGAs. Even though simulation and triggering found their natural niche inside the ML
community, there is a lot of unexplored potential applications in data analysis. The task of offline data
analysis is to assign a probability to each event selected given a hypothesis being tested, whether it is the
measured value of a fundamental constant, or the existence of a new particle. However, given the complexity
of HEP experiments and HEP itself, it is impossible to obtain an analytical expression for these probability
densities. All that is available in HEP are simulated events. Simulators in HEP are multi-stage programs
involving first-principle calculations, phenomenological models, and detailed detector simulation. These
simulations contain hundreds of latent parameters that are needed to describe the observed distributions.

These many latent variables are not used directly in data analysis; only the properties of the final-state par-
ticles are used. The main task of statistical data analysis in HEP is then to estimate the marginal probability
of each event based on the reconstructed variables. The traditional method to estimate these probabilities
is to search for a single observable, a summary statistic, make bins and assign a probability based on the
frequency observed in simulation. This multinomial distribution approach has been used in almost every
analysis in ATLAS to date, but it throws away a lot of information contained in the datasets collected by the
experiment. The loss in information comes from the fact that the frequency of events in each bin can be very
different from the actual probability of each event inside that bin. ML methods have been used extensively
to mitigate this problem by creating classifiers that distinguish signal from background processes. Binned
ML classifiers will naturally aggregate events that have similar probability in the same bin. Almost every
result from ATLAS today uses a form of ML classifier to increase the sensitivity. Despite the gains obtained
by using simple classifiers, this is still not everything ML methods can offer. When binning within the ML
classifier score there is still some information loss; smaller than before, but binning always loses informa-
tion. In addition, estimating the frequency of very rare events cannot be done precisely with the typical size
of the simulation samples available. The binned approach is common because it provides an accurate, even
if not always precise, calibration of the probability in every bin based on the simulated frequency of events.
Al methods can do better than that since they can learn the actual probability densities and build the analysis
event per event, extracting all the information available in the data collected.

These ideas have become known as “likelihood-free inference” or “simulation-based inference”. In the
past, some analyses have tried to approximate the true probability density of each event by using complicated
analytical functions. This method became known as matrix element method and has allowed for precise
measurements of fundamental quantities such as the top-quark mass with very few events just after the
discovery [26]. These analyses have been regarded as special cases because of the challenges in determining
the analytical functions representing the per-event probability. ML methods can automate this process and
provide much more accurate representations of the probability density. It would open a new era in HEP data
analysis. Several ML methods have been proposed to perform simulation-based inference and create per-
event probability densities. They can be especially powerful if used in conjunction with theoretical inputs
about the hypothesis being tested [27]. However, to date, no analysis at the LHC has been performed with
these methods because the proposals have only worked with toy examples. They have not addressed practical
challenges that will be addressed in this proposal. The ML method can only be used to perform a real
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analysis if it predicts the probability density accurately. In the case of binned analyses, there is no problem
to use a biased classifier since the probability is estimated from the frequency observed in simulation. In
fact, most ML classifiers in traditional analyses aim to reduce variance, which tends to introduce biases on

purpose.

A ML method used in a simulation-based inference should have not only low variance but also low bias.
This is achieved by training very deep neural networks (NN) to reduce the bias and very large ensembles to
reduce variance. Even for the simplest analyses, without a scalable ML infrastructure, developing and train-
ing these ML methods would be impossible. This infrastructure would also be necessary to verify the accu-
racy of the probability density estimation, which can be quite challenging given the multi-dimensionality of
the probability density. ML methods can also provide these tests by training adversarial networks.

In order to develop the infrastructure needed to

perform a simulation-based inference analysis, the | SATLAS iterna
off-shell Higgs boson measurement in the H — zZ [ — e oy
Z7Z — 4/ final state has been chosen. This analy- 4
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A per-event probability density estimation, on the
other hand, can easily handle quantum interference.

L

A preliminary result, using a reduced simulation sample in a restricted phase-space, was obtained by per-
forming the training of the NNs on a single GPU. An ensemble of 200 NNs was trained. Each individual
NN was very deep and wide taking over 6 hours to train. The comparison of this preliminary exercise with
the traditional analysis can be seen in Fig. 1. Especially for low values of the signal strength, the per-event
analysis can be 3—4 times more powerful. When using all the simulated events available and extending the
phase-space in the training, it is estimated that ~ 1,000 NNs will need to be trained, for an approximated to-
tal of 300 GPU-days. This development can only be performed in scalable ML systems. This proposal aims
to develop the tools to make simulation-based inference analyses possible in real experiments. Preliminary
tools for performing this kind of training in the GCP are being pursued.

Another big challenge is the description of the effect of systematic uncertainties on the probability den-
sities. In binned analyses, systematic uncertainties are described by the change in the frequency of a bin
when using a varied simulation. In the simulation-based inference literature, the most common proposal is
to describe systematic uncertainties by adding nuisance parameters as inputs to the neural network that pre-
dicts the probability density. While parameterized neural networks might work in principle, the application
would require simulated samples that are orders of magnitude larger than those currently available. This
proposal will develop a more viable approach for the description of systematic uncertainties by extending
the factorization between parameter of interest and nuisance parameters commonly assumed in traditional
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analyses to the case of per-event analyses. In this approach, each systematic variation would be interpreted
as an additional probability density ratio estimation, that can be tackled by the same methods and tools
described above. In total, a typical analysis would require the training and optimization of a few thousand
neural networks, which requires a scalable infrastructure. But once the tools and infrastructure are available,
every analysis that would benefit from this approach could readily shift and become more powerful.

During this project, the plan is to bring the off-shell Higgs boson analysis to completion as a demonstration
of the tools that will be made public for this new approach. Other analyses that benefit from this approach
may also be pursued at this early stage. The planned deliverables are described below:

1. Architecture to train per-event likelihood ratio estimates starting from standard fully simulated sam-
ples using the PanDA infrastructure.

2. Tools for assessment of accuracy and precision of per-event likelihood ratio estimates.

Tools for describing systematic uncertainties in per-event likelihood estimates.

4. Tools for hypothesis testing with per-event probability densities.

98]

3.4.2 Large scale hyperparameter optimization for ATLAS and beyond

Machine learning applications often employ many hyperparameter dimensions, with O(10) typical today
and the number growing over time as applications become increasingly sophisticated. Searching for an
optimized hyperparameter set can be time and resource intensive, growing rapidly worse with the dimen-
sionality, making it challenging and ultimately untenable to train models in sequential linear workflows,
especially when the training time on a single model is long.

Hyperparameter optimization (HPO) can poten-
tially improve the performance. For example . seqmentname, pom EVIEON
from 2019, ATLAS has performed HPO at scale ‘e”g _
on their offline flavor-tag DL algorithms using
Grid GPUs. The resulting algorithm provided
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cores for a day to get useful results. The required re-
sources remain large even after shrinking the needs
by constraining the hyperparameter search after some initial scanning, and repeated scans are needed for
updated input data sets. The needs will be much greater for the HL-LHC, with an order of magnitude more
data and more sophisticated machine learning models with more hyperparameters.

* Changes in blue wrt the usual HPO workflow.

many different analyses, such as [19-21], and has \
Submittask

Figure 2: The PanDA/iDDS based ATLAS HPO service

The solution we have pursued is to exploit parallelism both within a site and across sites to maximally
leverage available resources and reduce the search time. A PanDA/iDDS based HPO service has been
developed for ATLAS that provides a fully automated platform for hyperparameter optimization across ge-
ographically distributed cluster, grid, HPC and cloud resources, as shown in Figure 2. This service has been
applied in the FastCaloGAN fast calorimeter simulation, now part of ATLAS’s production fast simulation
AtlFast3 [28], where it is used to accelerate optimization of the 300 generative adversarial networks (GANs)
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requiring 100 GPU-days for a single optimization pass.

We propose in this project to generalize and extend the HPO service as an experiment agnostic, commu-
nity level service. This will involve work in areas previously described, including user code management
(Section 3.3.5), user interface and visualization (Section 3.3.6).

3.4.3 ML in Integrated End-To-End Workflows: ATLAS Fast Chain

Within the ATLAS collaboration, considerable effort is being put towards increasing the rate at which simu-
lated MC events can be produced during HL-LHC operation by developing fast alternatives to the algorithms
used in the standard Monte Carlo (MC) production chain. The Fast Chain [29] has been designed to be flex-
ible in combining fast and full simulation tools. It should not only meet the computational requirements
but, first and foremost, produce accurate physics modeling. This optimization of fast methods, including
Fast Track Simulation (FATRAS) [30], Fast Digitization, and Fast Reconstruction of pile-up tracks (track-
overlay), can be done using decision roulette based on a ML approach. A simple approach would be to
start from fast simulation and correct for residual differences, whenever the accuracy is not sufficient. This
could be achieved by training on events produced by the standard MC and its fast alternative to learn the
corresponding transformation function.

A more robust design would begin by identifying the phase-space characteristics that make a particular
fast simulation approach accurate and prepare the inputs accordingly. An appropriate metric would need to
be designed to label an event as well-modelled. Then, neural networks could be trained on all combinations
of pairs of full-fast events, as well as on various different representations of physical processes. This would
require extensive training, only possible with scalable ML infrastructure. Finally, one could use particle
level information before the detector simulation and conditions during data-taking to predict if and which
fast method could be used. An example of a physical process where ML can provide significant improvement
is the modelling of nuclear interactions in FATRAS. The parameterization that is currently implemented in
the MC is not able to reproduce exact details of the distributions and the use of generative models could
provide a more accurate alternative. As part of this proposal, the scalable ML infrastructure will be applied
to pursuing the robust strategy in order to quantify the gain that can be achieved in the rate of MC event
simulation. The capability will be generalized and integrated into the ML infrastructure for use by others.

3.4.4 Applying Large Scale ML Services at Jefferson Lab

The participation of Jefferson Lab allows us to extend the application of this work to the nuclear physics (NP)
program there, which offers use cases for large scale ML services. Involving NP scientists will contribute to
broadening the usability and scope of our ML services, without overrreaching thanks to the close affinity of
HEP and NP.

One of the NP facilities that is connected to the HEP science program is the Electron-Ion Collider
(EIC) [31, 32]. The more comprehensive understanding of the strong interaction that will be gained at
the EIC will allow to reduce systematic uncertainties of measurements at the LHC and neutrino experi-
ments. In the last years the international EIC community has established the physics case and the resulting
detector requirements for the EIC and is currently working on the first experiment [33]. The components
of the EIC detector are being designed and integrated into a complete large scale detector system with the
leading involvement of Jefferson Lab as one of the two host labs for the EIC (with BNL). The detector R&D
requires simulations of the detector response with high precision and high accuracy.

As part of the project, PanDA will be deployed at Jefferson Lab and integrated in the workflows for
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designing and optimizing detectors for the EIC. For the detector simulations, the new eA Simulation Toolkit
(eAST) initated by principals on this proposal (Diefenthaler, Wenaus) will be used that allows to combine
fast and full simulations in one application [34]. The full simulations are based on Geant4. For the fast
simulations, DNN models can be used that provide far more accurate results than parameterizations of the
detector response [35, 36]. The DNN approach is used in HEP, e.g., Fast Chain at the ATLAS experiment.
Individual detector components can be modeled in full detail and in a fast DNN model (trained from the
detailed model), with eAST allowing the optimal model for a particular use case to be selected, subdetector
by subdetector. Even more powerfully, and with yet greater processing demands, DNN modeling can extend
across multiple subdetectors, for example in particle flow approaches.

The quality of the detector modeling depends on the architecture of the DNN, e.g., its depth, and the
amount of training data. Using the large scale ML service will allow for exhaustive neural architecture
search (NAS) and HPO for precise and accurate modeling. This will be demonstrated for the design and
integration of two EIC detector components, an electromagnetic calorimeter and a dual radiator Ring Imag-
ing Cherenkov (RICH) detector. For both detector components, models will be developed using the large
scale ML service. A focus of the work will be on tests and validation of a distributed training capability that
will allow detector experts to combine opportunistic computing resources, €.g., at Jefferson Lab and at their
home institution for rapid turnaround of the studies of their detector component in an accurate simulation
of the experiment. As a last step, the large scale ML service will be used for overall optimization of the de-
tector and its parameters. The EIC community has started to use AI/ML for the optimization of the detector
design [37]. The iterative workflow for the AI/ML supported optimization will be tested with the large scale
ML service and validated for the optimization of the detector components as well as the whole experiment.

3.4.5 Applying Large Scale ML Services in the Intensity Frontier: DUNE and Belle 11

Our BNL team includes collaborators on DUNE and Belle II who have identified ML applications within
those experiments for which our scalable ML services can be valuable. As our project progresses we would
aim to draw in more AI/ML applications and analyses that can benefit, from these and other experiments.

In DUNE, the BNL R&D project "Large Scale Scientific Simulation Systematics GAN" (LS4GAN) [38]
uses generative adversarial networks (GANSs) to train a model that translates simulated HEP data to real
data, such that a given simulated event will then differ from its translated version in ways that can reveal
real inaccuracies, artifacts, resolutions and biases in the simulation. The data volumes and neural networks
involved are large, requiring large scale processing for training and inference that can benefit from large
scale ML services. Current small-scale studies consume of order 16 GPU weeks for one pass; moving to
realistic LArTPC images will be much more intensive.

In Belle II, flavor identification or “tagging" is often a crucial ingredient for CP violation measurements.
One AI/ML based flavor tagging approach uses a multilayer perceptron (MLP) architecture with features
sensitive to the kinematic attributes of the particles, such as momentum and polar angle. Work thus far
has focused on B-tagging, involving an eight-layer MLP trained with 10M event samples on a single GPU,
taking 48hrs [39]. A new charm meson application of the technique must contend with the shorter lifetime
of charm mesons and corresponding lower separation power of MLP features. Considerably larger training
samples and longer training times can be expected, making optimisation of the flavour tagger prohibitively
expensive unless the analysts have access to substantially more computing resources.
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3.5 Project Methodology and Execution
3.5.1 Impact on the HEP AI/ML Ecosystem

Through this proposal and project we aim to add to the HEP AI/ML ecosystem a transformative capability
to scale their ML applications across geographically distributed resources and the full range of platform
types to achieve otherwise unattainable processing scales, emphasising high usability and minimal intrusion
upon a researcher’s time. Scientists employing or evaluating AI/ML approaches today are constrained in
their ambitions and scientific creativity by the resources available on individual accessible resources. We
plan to develop ecosystem-level services available to the community to submit machine learning workflows
across sites and across platform types. By so doing we will greatly expand the scaling reach available to
researchers, and lower the often substantial barriers between developing applications in a small highly usable
environment and moving them to large scale resources with the capacity to process the deep and complex
models that may give the greatest scientific return.

In the preceding sections we have described the capabilities, software, external leverage and platform
expertise we bring to bear; the suite of services and capabilities we plan to build; and the broad set of exper-
iment applications that will be the seedbeds and testbeds for developing this new suite for the HEP AI/ML
ecosystem. The center of gravity of project effort is in these experiment teams, primarily postdocs who will
bridge experiment-grounded applications to the developing services, insuring the services we deliver meet
the needs of real analysis, and receiving training at the leading edge of AI/ML as applied to our domain. We
focus on domain science applications that will be empowered by our services, applications that will guide
development, validate utility, and serve as examples and testbeds for community use.

3.5.2 Building Early Career Expertise

All activities of this proposal are designed to engage students, postdoctoral researchers and other early-
career scientists. The individual and team activities described in detail in Sec. 3 will create the infrastructure
for a more widespread applications of AI/ML tools and this project will only be successful if data-intensive
researchers are trained with the skills to use them. Table 1 summarizes the goals for participation in train-
ing activities associated to this project. In total, we aim to engage more than 100 researchers in training
activities, either as visitors to the participating institutions or in tutorial sessions.

Table 1: Summary of anticipated project participant goals and characteristics in terms of early-career (student, postdoc, junior faculty).

Participants External
Program Description from this Proposal | Early-Career Researchers
PanDA/iDDS core workshops (TA1) 15 10
Tutorials on ML Platforms (TA2-TA3) 5 50
Tutorials on Physics Applications (TA4) 5 50

Scheduling events and research opportunities Inclusiveness is of particular importance in managing the
calendar of events and opportunities in an international setting. The workshops and tutorials will account
for both US and European time zones and academic/holiday calendars of universities and laboratories. All
tutorial events will be recorded and posted online so that participants in other time zones can also engage in
the proposed activities. The events calendar will be actively managed by the lead PIs at BNL.

Virtual and in-person events The experience during the pandemic demonstrated that some activities can
be held in hybrid mode. The in-person experience can be valuable for networking and for direct communi-
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cation between the researchers involved, but offering workshops and tutorials virtually can provide broader
reach and greater visibility for the proposed activities. During the pandemic, scientists reported far greater
possibilities for participation in virtual events than in-person. Whenever possible, the activities will be hy-
brid in order to foster a more inclusive environment. The vast experience of the lead PlIs organizing meetings
will be used to broaden participation in our events.

Advertising events Events will be scheduled in advance and advertised via partner network channels.
Given the collaborative nature of our science, these channels are already well developed in general. The
lead PIs will track where advertisements have been made and actively seek additional channels. Feedback
and assessment from previous events will be used to identify gaps and areas for further outreach.

Building in EDI  All workshops and tutorials will follow guidelines for best practices from the EDI per-
spective, making sure that attendees represent the diversity of the collaboration, and that every decision
includes a clear description of roles and expectations. The events will actively recruit members of under-
represented groups to ensure broad participation. Events will be organized in a way that promotes equitable
practices including considerations about the make-up of the organizing committee for events, the content to
collect on the registration form, the information provided on the website, the accessibility of the venue and
event resources to support involvement.

Career development An important aspect of engaging with early-career researchers is understanding that
many will pursue careers outside of academia. Past experience shows that research software developers and
computing experts will have numerous career choices available. Participants in the activities of this proposal
will have several opportunities to work with partners outside academia, including large scale companies such
as Google and Amazon. The skills developed by students and early-career scientists will be invaluable in
physics research and beyond, including not only applications in industry, but across scientific applications.
This proposal will engage them with the broader data-science community.

Tracking success It is important to understand where early-career scientists that participate in the activ-
ities of this proposal go for their next position. The career paths of students, postdoctoral researches and
early-career scientists that participate in this proposal will be documented. Longer term they may become
contacts for new academia-industry partnerships and provide real-world feedback on necessary skill sets.

4 Deliverables

The high level deliverables constituting the end products of the project we propose are summarized here. A
timeline of detailed deliverables is provided in the next Section.

1. As a contribution to the HEP AI/ML ecosystem, an experiment agnostic suite of ML Services (MLS)
demonstrated to be highly scalable across geographically distributed resources that can support work-
flows running across facilities of a range of platform types including clusters, grids, clouds, HPCs
and LCFs, with the infrastructure aware of and leveraging accelerator resources where available. The
Year 3 scalability target is a 75k concurrency level for a single workflow, demonstrated on cloud and
(allocations permitting) LCF resources.

2. An MLS component specifically tailored to provide integration of and convenient access to LCF
resources, based on function as a service (FaaS) software, anticipated to be Parsl/funcX.

3. An interactive environment for MLS based on Jupyter and supported by PanDA/iDDS monitoring
systems augmented for MLS, including support for pseudo-interactive processing on compatible re-
sources (such as clouds and ‘owned’ clusters).
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5

. GitHub based open source repositories hosting the MLS software. The MLS software has as depen-

dencies PanDA, iDDS and ancillary software (e.g. Harvester) all of which are also open source.

. At least one operating, available, community level instance of the MLS system, conveniently accessi-

ble via cross-institution federated login. We anticipate the instance being located at BNL SDCC; ad-
ditional instances will be welcome. The community instance will have the capability to use resources
(subject to availability) on DOE HPCs including the LCFs, commercial clouds (Google, Amazon, and
possibly NVIDIA), and a flexible array of cluster and grid resources.

. Packaging and documentation for the MLS software, and its dependencies, supporting interested par-

ties in bringing up their own instances of the service suite.

. The MLS suite will include experiment agnostic support for highly scalable hyperparameter optimiza-

tion, ML model training, hypothesis testing via per-event likelihood analysis and associated system-
atics evaluation, and reinforcement learning.

. We will also deliver example testbeds for all the MLS service types, as well as generalized domain sci-

ence examples in GAN based fast simulation, and an infrastructure for scaled, parallelized evaluation
and optimization of complex end-to-end workflows utilizing ML (such as the ATLAS Fast Chain).

. With the bulk of the supported effort going to postdocs developing testbeds and applications by bridg-

ing between experiment analysis groups and the core/MLS developers, a valuable end product will be
a cadre of young researchers trained at the leading edge of challenging AI/ML applications in HEP.

Timeline and Personnel

The timeline of deliverables is summarized in Table 2. “MLS” refers to the ML Services infrastructure
delivered by the project, which is progressively augmented in scope and capability as indicated by the
deliverables. The timeline and deliverables have been scaled and scoped appropriately for the available
effort, both project-supported (task areas of supported personnel are shown in Table 4) and off-project (the
core PanDA/iDDS team). We do not attempt to resource load the timeline/deliverables at this stage.

Table 3 shows the project participants with their roles, and Table 4 shows project supported personnel
with their task areas and roles. Some planned postdoc personnel can already be identified, and are named.
This will be a great asset for a quick start with experienced people. Our timeline foresees completing the
postdoc team during the first year.

For reference the task areas are

TAT1 - Core infrastructure

TA?2 - Platform support

TA3 - Experiment agnostic large scale ML services (the MLS suite)
TA4 - Applying large scale ML services in the experiments
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Year 1

TA1, TA3 | MLS initial version implemented as experiment-agnostic generalization of ATLAS cross-site
HPO service, and in use by non-ATLAS team members

TA1, TA3 | MLS instance established at BNL SDCC for project internal use

TA1-TA4 | Introductory workshop (Tutorials on PanDA/iDDS MLS, ML platforms; Physics app plans)
TA2 MLS platform support for clusters, grid, GCP, and HPC (NERSC)

TA2 Harvester implementation using Parsl/funcX to manage workflow execution

TA2, TA3 | MLS scaling demonstrated at 10k concurrency level on cloud resources

TA2-TA4 | Postdoc/grad student team 30% complete at month 1, 60% by month 6, 100% by month 9

TA3 MLS Jupyter interactive environment, CLI and UI for all supported workflows
TA3 User code management with simplified code transfer to execution environment
TA3 explicit deliverables for community tool support: tensorflow, horovod, mlflow, etc

TA3, TA4 | MLS applied to train per-event likelihood ratio estimates using standard full simu samples
TA3, TA4 | ATLAS use case of simulation-based inference implemented in MLS

TA3, TA4 | Generic (experiment agnostic) HPO implemented in MLS

TA3, TA4 | MLS integrated in the ATLAS FastChain workflow to test fast simulation strategies

Year 2

TA1, TA3 | Dask based interactive provisioning of scalable resources on clouds
TA1, TA3 | ML model training platform extension to the MLS HPO service implemented
TA1-TA4 | MLS applications workshop 1 (MLS services/ML platforms tutorials, physics applications)

TA2 MLS platform support extended to AWS and NVIDIA

TA2 MLS delivering user workloads to one LCF via Parsl/funcX

TA2, TA3 | MLS scaling demonstrated at 30k concurrency level on cloud resources
TA3 MLS service instance at BNL SDCC access extended to early adopters
TA3 User code management extended with container management Ul in Jupyter

TA3, TA4 | Tools for assessment of accuracy and precision of per-event likelihood ratio estimates
TA3, TA4 | ATLAS use case of evaluating systematic uncertainties implemented in MLS

TA3, TA4 | Generic HPO support in MLS applied in non-ATLAS use case

TA3, TA4 | Generic reinforcement learning use case implemented in MLS

TA3, TA4 | MLS used to quantify gains from ATLAS FastChain simu strategies

Year 3

TA1-TA4 | MLS applications workshop 2 (MLS services/ML platforms tutorials, physics applications)
TA2 MLS on at least one LCF available to community, with ALCC allocation

TA2, TA3 | MLS scaling demonstrated at 75k concurrency level across cloud and LCF resources

TA3 MLS service instance at BNL SDCC opened for general use

TA3, TA4 | Tools for hypothesis testing with per-event probability densities
TA3, TA4 | General formalism for describing systematic uncertainties in per-event likelihood estimates
TA3, TA4 | MLS FastChain analysis generalized for quantified simu strategy evaluation

Table 2: Timeline of deliverables.
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Project Participants (key in bold)

Roles (lead in bold)

Torre Wenaus (BNL Physics)
Tadashi Maeno (BNL Physics)
Alexei Klimentov (BNL Physics)

PI, oversight and coordination, postdoc supervision
PanDA/iDDS core and ML Services development
Google Cloud Platform integration and deployment

Paul Nilsson (BNL Physics)
Paul Laycock (BNL Physics)
Brett Viren (BNL Physics)

Interactivity and PanDA core developer
Belle II liaison and use case studies
DUNE liaison and use case studies

Meifeng Lin (BNL CSI)

HPC/LCF integration, postdoc supervision

Kaushik De (UT Arlington)
FaHui Lin (UT Arlington)
Fernando Barreiro Megino (UT Arlington)

Cloud Platform integration and deployment, physics use cases
PanDA core developer
PanDA core developer

Rafael Coelho Lopes de S& (UMass Amherst)
Verena Martinez Outschoorn (UMass Ambherst)

Application Support
Training

Rui Zhang (U Wisconsin Madison)
Wen Guan (U Wisconsin Madison)

HPO workflow and development of visualization tools
iDDS main developer

Markus Diefenthaler (JLab)
Malachi Schram (JLab)

JLab lead, use case studies, postdoc supervision
ML services development, postdoc supervision

Table 3: Roles of project participants.

Project Supported Personnel ‘ FTEs ‘ Roles

Torre Wenaus (BNL Physics NPPS Group Leader) | 0.25 | PI

Postdoc (BNL Physics) 0.5 TA3, TA4 - MLS for experiment use cases
Meifeng Lin (HPC Group Leader, BNL CSI) 0.1 TA2 - HPC/LCEF support and FaaS integration
Postdoc (BNL CSI) 0.5 TA?2 - HPC/LCF support and FaaS integration
Postdoc (UT Arlington) 1.0 TA3, TA4 - MLS for experiment use cases

Rui Zhang (U Wisconsin Madison) 0.2 TA3, TA4 - MLS workflow and app development
Postdoc (U Wisconsin Madison) 0.5 TA3, TA4 - MLS for experiment use cases

Grad student (U Wisconsin Madison) 0.5 TA3, TA4 - MLS for experiment use cases
Martina Javurkova (Postdoc, UMass Amherst) 1.0 TA4 - Develop analysis, fast simu tools with MLS
Evangelos Kourlitis (Postdoc, ANL) 1.0 TA2-TA4 - MLS use cases, ANL/ALCEF facilities
Postdoc (JLab) 1.0 TA3, TA4 - MLS for experiment use cases

Table 4: Project supported personnel.
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Appendix 1: Biographical Sketches

This appendix provides biographical sketches ordered with the PI first, then key personnel listed alphabetical
by last name.
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Appendix 2: Current and Pending Support

This appendix provides declarations of current and pending support ordered with the PI first, then key
personnel listed alphabetical by last name.
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Appendix 4: Facilities and Other Resources

Collaborative and Experimental Resources

Many of the principals on this proposal are active members of large participating collaborations (ATLAS,
Belle I, DUNE) and other collaborations that can benefit in the future (Rubin Observatory, sSPHENIX, EIC).
The extensive computing resources for offline data processing, Monte Carlo production, and user analysis
within these collaborations will be accessible to the participants in this proposal (see the attached letter from
ATLAS SW&Computing Coordinator, Dr. Alessandro Di Girolamo). Development and testing of the new
AI/ML software stack proposed here will be carried out at these collaborating facilities as well as the re-
sources mentioned explicitly below. In addition, close collaboration with physicists and software developers
within these collaborations, for example those working on core PanDA and iDDS, will be beneficial to this
proposal.

Brookhaven National Laboratory

As the lead institution of the project, BNL has a wide range of computing facilities and resources to support
the software and computing activities in the proposal.

Computational Science Initiative (CSI)

While long focused on timely analysis, interpretation, and overall management of high-volume, high-
velocity heterogeneous data to pursue solutions for the national and international scientific community,
the Computational Science Initiative (CSI) at the U.S. Department of Energy’s (DOE) Brookhaven National
Laboratory additionally excels at integrating computer science, applied mathematics, and computational sci-
ence with broad domain science expertise to tackle problems and advance knowledge impacting scientific
discovery. CSI’s expertise and investments across the Brookhaven Lab, including its connectivity to flagship
physics and materials science facilities that attract thousands of scientific users each year, are tackling the
most pressing big data and science challenges. These efforts now are being augmented by CSI’s growing
high-performance computing (HPC), applied mathematics, and quantum science capabilities.

Scientific Data and Computing Center (SDCC)

Brookhaven’s Scientific Data and Computing Center (SDCC) combines advanced expertise in high-throughput,
high-performance, and data-intensive computing with data management and preservation in a centralized
computing facility. It provides varied services to local and international clients that require stable, reliable
computing capabilities for processing, storing, and analyzing large-scale data sets, along with HPC resources
for increased computing power. The SDCC houses systems for high-performance and data-intensive com-
puting, data storage, and networking, offering everything from novel research platforms to highly reliable
production services. The facility stores 215 PB of data. In 2021, the SDCC processed 1.1 exabytes of data
and transferred in and out more than 180 PB of data, ranking it among the top 10 data archives in the world.

The SDCC currently operates the institutional cluster (IC) at Brookhaven Lab. The IC clusters include:
Annie Cluster- 216 compute nodes with:

e HPE ProLiant XL190r Gen9
¢ Two CPUs Intel Xeon® CPU E5-2695 v4 @ 2.10 GHz
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2x NVIDIA K80 (108 compute nodes) or 2x P100 (108 compute nodes) per node (4 K80 or two P100
devices per node)

256 GB Memory

InfiniBand EDR connectivity

Two submit nodes

Two master nodes

Central storage for the IC is provided by IBM’s Spectrum scale file system (GPFS), a high-performance,
clustered file system that supports full POSIX semantics. * 1.9 TB of local disk storage per node ¢ 1 PB of
GPFS distributed storage * A GPFS-based storage system with a bandwidth of up to 24 GB/s is connected
to the IC.

Francis (Knights Landing) Cluster- 142 compute nodes with

KOI S7200AP

One Intel Xeon Phi CPU 7230 @ 1.30 GHz
NUMA node0O CPU(s): 0-255

Thread(s) per core: Four

Core(s) per socket: 64

Socket(s): One

NUMA node(s): One

192 GB Memory

Dual Rail Omni-Path (Genl) connectivity
Two submit nodes

Two master nodes

Skylake Cluster- The cluster consists of 64 compute nodes with:

Dell PowerEdge R640

Two CPUs Intel Xeon Gold 6150 CPU at 2.70 GHz

NUMA node0 CPU(s): 0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34
NUMA nodel CPU(s): 1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35
Thread(s) per core: One

Core(s) per socket: 18

Socket(s): Two

NUMA node(s): Two

192 GB Memory

InfiniBand EDR connectivity

Al Cluster

The CSI AI Cluster is intended to process artificial intelligence (AI) workloads. It is equipped with
eight NVIDIA V100 Tensor Cores. Five Al compute nodes are connected via EDR InfiniBand. Each node
includes:

HP Apollo 6500 Gen10 Server

Eight NVIDIA V100 GPUs with 32 GB memory interconnected with NVLink
Two Intel Xeon Gold 6248 (Cascade Lake) CPUs.

Two NUMA nodes

Sockets: 2
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* Cores Per Socket: 20
* 768 GB memory
* Dual 10 GigE to Storage

Central Storage BNLBox is SDCC'’s cloud storage service that enables users to store their scientific data
and documents locally, providing accessibility that is available from anywhere in the world via Internet ac-
cess. The files stored in BNLBox can be shared with other BNLBox users, as well as external collaborators.

Computational Science Laboratory

The Computational Science Laboratory, also part of CSI, operates a collaborative laboratory for advanced
algorithm development and optimization. The focus is to develop tools and techniques to solve problems
in computational physics, biology, chemistry, materials science, and energy and environmental sciences by
effectively using increasingly faster supercomputers.

HPC1 Cluster The HPCI cluster consists of 21 nodes with 336 cores, each with 128 GB dynamic random-
access memory (DRAM), connected with FDR InfiniBand. HPC1 Includes 12 NVIDIA GPUs and 8 Intel
Phi coprocessors with 0.5 PB Lustre storage.

Field Programmable Gate Array (FPGA) Development Server CSI also has a few FPGA development
servers with:

* 1 Intel Xeon CPU E5-2620 with eight cores
256 GB Memory

One Intel Altera 10 GX FPGA card

One NVIDIA Pascal 100 GPU

Two NVIDIA Volta 100 GPUs

Computing for National Security

Part of Brookhaven’s CSI, the Computing for National Security Department is at the crossroads of research
conducted to understand how architectures and systems can tackle the challenges posed by data-intensive
computing and its impacts on both scientific and national-security-motivated problems.

Advanced Computing Lab (ACL)

The ACL is being developed as a focal point and collaborative environment at Brookhaven for research
and development (R&D) of architectures and systems, as well as for siting and enabling advanced comput-
ing testbeds. The ACL will consist of state-of-the-art equipment capable of facilitating R&D on comput-
ing technologies at different development and maturity stages, from materials to devices to subsystems to
early full-system prototypes. High-resolution, accurate static and dynamic instrumentation for performance
(time), power, and reliability will be included on specialized workbenches. The ACL will include machine
room space properly designed for optimal operation and safe access to experimental testbeds. Network con-
nectivity for external users will be provided as required. The ACL will include office space for technology
providers and external collaborators.
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NVIDIA DGX-2 Artificial Intelligence Cluster

A state-of-the-art NVIDIA DGX-2 is fully operational in the Advanced Computing Lab (ACL). The system
is powered by two Intel Xeon Platinum CPUs and 16 fully interconnected Tesla® Tensor Core V100 graphics
processing units (GPUs), each with 32 GB of HBM2 memory. Total system memory is 1.5 TB of DDR4.
Storage is 30 TB of non-volatile storage class memory. The system is connected to Brookhaven’s Scientific
Data and Computing Center (SDCC) via dual 100 GigE networks. The system software consists of the
original operating system, a “singularity” container, and Slurm scheduler. Brookhaven Lab was among the
earliest adopters of the system, nicknamed Minerva.

NVIDIA DGX Station A100

ACL also has a new NVIDIA DGX A100 station, equipped with 4 NVIDIA A100 GPUs with 40 GB GPU
memory each, and an AMD 7742 CPU with 64 cores.

Argonne National Laboratory

With the role of a participating institute to this proposal, ANL is capable of providing a significant part of
the computing resources to support the proposed service. These resources are mainly supercomputers or
computer clusters leveraging hardware acceleration for Al applications. The LCF providing the resources,
along with the planned usage, is described below.

Argonne Leadership Computing Facility (ALCF)

The Argonne Leadership Computing Facility (ALCF), a U.S. DOE Office of Science User Facility located
at Argonne National Laboratory, enables breakthroughs in science and engineering by providing supercom-
puting resources and expertise to the research community. Supported by the DOE’s Advanced Scientific
Computing Research (ASCR) program, the ALCF and its partner organization, the Oak Ridge Leadership
Computing Facility, operate leadership-class supercomputers that are orders of magnitude more powerful
than the systems typically used for open science. ALCF computing resources—available to researchers
from academia, industry, and government agencies—support large-scale, computationally intensive projects
aimed at solving some of the world’s most complex and challenging scientific problems. Through awards of
supercomputing time and support services, the ALCF enables its users to accelerate the pace of discovery
and innovation across disciplines. The ALCF’s team of computational scientists, data scientists, perfor-
mance engineers, system administrators, software developers, visualization experts, and support staff help
ensure users get the most out of the facility’s high-performance computing systems. The ALCF also provides
training and expertise to prepare researchers for the next generation of leadership computing resources.

The proposed service aims to harvest computational power for ML applications from hardware accelera-
tion, in particular GPUs. Thus we focus on the ThetaGPU system of ALCFE.

ThetaGPU The ThetaGPU supercomputer supports complex and diverse workloads involving simulation,
data analytics, Al, and machine learning. ThetaGPU is an NVIDIA DGX A100-based system. It is com-
prised of 24 NVIDIA DGX A100 nodes. Each DGX A100 node comprises eight NVIDIA A100 Tensor Core
GPUs and two AMD Rome CPUs that provide 22 with 320 GB of GPU memory and two nodes with 640
GB of GPU memory (8320 GB aggregately) of GPU memory for training Al datasets, while also enabling
GPU-specific and -enhanced HPC applications for modeling and simulation. The ThetaGPU is integrated
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into a larger system, called Theta, via the ALCF’s Cobalt HPC scheduler and shares access to a 10-petabyte
Lustre filesystem. A 15-terabyte solid-state drive offers up to 25 gigabits per second in bandwidth. The
dedicated compute fabric comprises 20 Mellanox QM9700 HDR200 40-port switches wired in a fat-tree
topology. Table 5 summarizes the capabilities of ThetaGPU compute nodes.

Component per Node Aggregate
AMD Rome 64-core CPU 2 48

DDR4 Memory 1 TB on 320 GB & 2 TB on 640 GB 26 TB
NVIDIA A100 GPU 8 192

GPU Memory 22 nodes w/ 320 GB & 2 nodes w/ 640 GB | 8,320 GB
HDR200 Compute Ports 8 192
HDR?200 Storage Ports 2 48
100GbE Ports 2 48

3.84 TB Gen4 NVME drives | 4 96

Table 5: ThetaGPU Compute Nodes Overview.

Jefferson Lab

Jefferson Lab operates an extensive computational infrastructure in support of its experimental and theoret-
ical program. The Scientific Computing Department at Jefferson Lab works closely with the Experimental
Nuclear Physics Division (Diefenthaler) and Data Science Department (Schram), whose members have on-
site access to a range of equipment and technical support, including but not limited to staff workstations
and software development tools; rack space, power and cooling for hardware; 298 node Intel/AMD com-
pute cluster; 3 node AI/ML development cluster — 4x NVIDIA Titan-RTX GPUs per node; 3 node 40 GPU
AI/ML cluster — NVIDIA T4 GPUs 16+16+8 configuration; Infiniband, OmniPath and Ethernet networking;
disk managed storage for data and code; and robotic tape library for backup.

Google Cloud Platform

ATLAS is provisioning 15 months of computing resources, through unlimited-usage subscription pricing,
on the Google Cloud Platform (GCP) for 2022 and 2023 as a pilot demonstration project at production
scale. This is the continuation of an ATLAS-Google GCP R&D project which was provisioned during the
previous three years, from 2019 to 2022. Two of the principals on this proposal, Klimentov and De, led the
GCP R&D project. The pilot project will have average resources equivalent to an ATLAS computing site
with 7000 cores and 7 PB of storage. Access to these resources in the GCP cloud will be available through
the collaborating PIs in the proposal. The resources have an elastic spiking capability, able to grow to far
more cores for a short period of time, that we will use for our ML services scaling tests. In addition, Google
will provide training and deployment support for personnel in this proposal.

Amazon Web Services

US ATLAS has obtained substantial credit on Amazon Web Services (AWS) to demonstrate usability for
physics analyzers. This is an active project led by De. These resources will be available to support ATLAS
users if this proposal is funded. In addition, scientists and software developers involved in this proposal will
benefit from the valuable experience in using AWS for the past few years.
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NVIDIA

ATLAS is collaborating with NVIDIA as a part of the ExaTrkX R&D project. ATLAS and NVIDIA plan to
increase their collaboration in the AI/ML domain in coming years. Discussions on future collaboration begin
in June 2022. The collaboration will include access to a new ARM-based center at the CSCS Swiss National
Supercomputing Centre in Switzerland, which contributes to ATLAS pledged resources. Two principals on
this proposal, Klimentov and De, collaborated with CSCS as part of the DOE ASCR funded BigPanDA
project.
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Appendix 5: Equipment

This is an effort-driven project entailing software and algorithm development, testing and validation, using
distributed computing resources as described in the proposal and Appendix 4. The project does not pro-
vision any physical hardware. Participating institutes with supported personnel are expected to equip their
personnel with computers.
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Appendix 6: Data Management Plan

In keeping with OSTI guidance on data management, we plan to manage our data in the most open manner
allowed. We may make use of open data sets from the experiments which this proposal describes, primarily
the products of official simulation campaigns (typically ROOT format) performed by the experiment collab-
oration. Such use is governed under the data management plans' of each experiment which we must and
will honor. Every experiment with such data has at least one proposal team member who is a collaborator
and thus we do not expect any impediments in honoring the experiment data management plans.

Data, Metadata and Results The data produced by the proposed work will consist of derivatives of ex-
periment data (thus subject to the above) or come from simulations or performance measurements which
this effort uniquely generates. This data will span a variety of scale and format and will be made publicly
available utilizing appropriate storage and distribution mechanisms.

Data Access and Sharing We will leverage existing data systems at BNL and the other participating Lab-
oratories, used in their intended conventional ways, to provide centralized storage and distribution points.
Where feasible, and to keep with the guidance, we will also investigate ways to augment these centralized
facilities with more publicly distributed mechanisms such as IPFS and "data repository" systems. Metadata,
configuration data, software versions and source and documentation will also be provided in order to enable
reproducing results.

Data in published results (figures, plots, etc) will be provided in a manner closely associated with the
published document, such as embedded in the PDF. Where not feasible, these data will be provided as
auxiliary files to the publication. We will in all cases include instructions on how to obtain the data from the
centralized and/or publicly distributed systems described above.

Continuous Integration We expect a limited set of concise data files will be curated for use as input to
ongoing automated code testing as run through the continuous integration system. As feasible, these files
will be distributed alongside the source code, or where that is not feasible they will be available online from
publicly accessible servers.

Software Preservation The long term data preservation requirements are modest. Our preservation will
be in the form of code and configuration and the metadata needed to connect specific input data to results
through code and configuration. We thus expect long-term preservation to rest with the code public repos-
itories used by the project, namely GitHub. We will maintain a mirror to guard against the unlikely loss of
the primary.

Confidential and Personal Data We do not expect any data used or produced by this project to contain
information which is personally identifiable or otherwise sensitive of a nature which requires special protec-
tion.

I'BNL Physics department maintains a centralized collection of these experiment data management plans at https: //www.
phy.bnl.gov/computing/index.php/Data_Management_Plans. This collection will be updated as needed for this proposal.
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Appendix 7: Computational Resources

Computational resources needed to support the proposed research include CPU, GPU and (to a lesser de-
gree) storage resources. As described in Appendix 4, a wide range of powerful national and international
computing resources will be available to the project if funded, access made possible through the participation
of major HEP laboratories and experiments, and experiment-industry collaborations.

BNL SDCC will host the large scale ML services (MLS) suite produced by the project, as a development
platform early in the project and transitioning to an open community service by the project’s completion.
The resources directly required for service hosting are small, but the responsibility for hosting a secure, high
availability, openly accessible service is large, and BNL SDCC has deep experience in this. BNL will in
addition provide AI/ML processing resources, CPU and GPU, primarily via the resources assigned to the
involved experiments (ATLAS, Belle II, DUNE). We will leverage the involvement of BNL’s Computational
Science Initiative (CSI) with its strong connections to ASCR and the full DOE supercomputing complex to
leverage the complex for the HPC development the project will involve.

Jefferson Lab will also provide CPU and GPU processing resources via their EIC oriented participation in
the proposed project. Both BNL and JLab host JupyterLab services that support their research communities;
the project will be able to draw on these services for the deployment of its Jupyter-based interactivity services
to the community. Both BNL and JLab have provided letters below indicating their willingness to collaborate
should this proposal be funded.

The project will also benefit greatly from the involvement of ANL, by which we will gain access to the
resources and expertise of in particular ALCF. Our effort plan includes support for an ANL postdoc who will
be charged with serving as a bridge between the project’s research and development program to integrate
and leverage ANL computing resources including ALCEF, in addition to participating in the development of
experiment use cases and applications for large scale AI/ML services.

Our plan for DOE and other supercomputer access (such as CSCS in Switzerland) is to gain near term
small scale access via our closely connected collaborators on the proposal (Lin, Kourlitis, Klimentov),
possibly including discretionary allocations we will request (as described below for ALCF), and in the longer
term (years two and three) formally apply for supercomputer allocations in support of the growing needs
of the project. Given that the proposal collaborators have close involvement with multiple supercomputing
facilities across the DOE and internationally, as well as guaranteed access to large scale commercial cloud
resources than can also host the large-scale scaling exercises the project will require, we have many avenues
for backup plans should any given facility not yield an allocation.

The storage resources required by the project are those needed to host the training datasets of the project’s
testbeds and applications. They will be provided via the resource allocations of the associated experiment.
Apart from this the project proper will have negligible storage needs.

BNL Scientific Data and Computing Center (SDCC)

BNL SDCC has a variety of computing resources as detailed in Appendix 4, with new hybrid clusters
expected in FY23. We plan to use SDCC to perform initial code prototyping for the HPC support and
integration task, and will have access to the CPU, GPU and storage resources as well as software services
provided by SDCC through an MOU (see the attached letter from Chair of SDCC, Eric Lancon). We expect
the required computing resources for the initial development and testing will be minimal.
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Argonne Leadership Computing Facility (ALCF)

To utilize ALCF ThetaGPU we plan to request allocation time via a major competitive LCF allocation
program. As a preparation phase, in order to achieve computational readiness for the major allocation
program, we plan to request "start-up" time via the ALCF Director’s Discretionary Allocation Program
(DDAP). This program is designed for such purpose and it will allow us to explore and develop capable,
effort efficient mechanisms to integrate and leverage LCF HPC resources, as described in Section 3.1.2 and
Section 3.2. The amount of requested time would be 10,000 GPU-hours (translating to about 1,300 node-
hours) with an initial duration of the DDAP at 6 months. As a reference, the complete training of the ATLAS
FastCaloGAN took about 2,500 GPU hours [28]. That allocation time will cover the relevant Year 1 (TA2)
needs, as described in Table 2.

Towards the end of the 6 month period of the DDAP, we will be ready to apply for a major allocation
award, such as DOE Innovative and Novel Computational Impact on Theory and Experiment program or
ASCR Leadership Computing Challenge program (ALCC). We plan to scale up our request by a factor of
100 with a duration covering the remaining time of this proposal, until August 2025. With this larger award
we will be able to focus on scaling as well as capability of the proposed service, as described in Section 3.3.
Furthermore, we will extensively test the infrastructure and demonstrate its significance within this proposal
via the use cases from experiments that are listed in Section 3.4. That allocation will cover computational
needs of Year 2 and 3 (TA2-TA4), as described in Table 2.

Jefferson Lab

Jefferson Lab operates an extensive computational infrastructure in support of its NP program as described
in Appendix 4. For the work on TA3 and TA4, in particular applying the large scale ML service to the
experimental NP use case, we plan to use the resources at Jefferson Lab. We will have access to the CPU,
GPU and storage resources as well as software services provided by the Scientific Computing Department
through an MOU (see the attached letter from Chair of Graham Heyes). We expect the required computing
resources for development, testing, and validation testing will be minimal.
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To Whom It May Concern:

This letter is to confirm that if the proposal submitted by Dr. Torre Wenaus entitled “Distributed
Machine Learning Service for Data-Intensive Applications” is selected for funding, ATLAS
members of the project team will have access to the appropriate computational resources (Grid,

HPC and commercial clouds) as ATLAS R&D HL-LHC project according to the ATLAS
Computing Shares Policy.

Yours sincerely,

Alessandro Di Girolamo,
ATLAS Computing Co-Coordinator

CERN Senior Staff
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Jeremy Love

Office of High Energy Physics
Office of Science

Department of Energy
Washington, DC

Dear Jeremy:

2 Center St
P.O. Box 5000
Upton, NY 11973-5000

managed by Brookhaven Science Associates
for the U.S. Department of Energy

www.bnl.gov

This letter is to confirm that if the proposal submitted by Dr. Torre Wenaus entitled “Distributed
Machine Learning Service for Data-Intensive Applications” is selected for funding, the project
team will have access to appropriate computational resources, subject to an MOU agreement
with the Scientific Data and Computing Center (SDCC) at Brookhaven National Laboratory.

Sincerely,

L

Eric Lancon, Ph.D.
Chair, Scientific Data and Computing Center
Computational Science Initiative

Brookhaven National Laboratory
Upton, New York 11973-5000
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This letter is to confirm that if the proposal submitted by Dr Torre Wenaus, of BNL, and Dr Markus
Diefenthaler, of TINAF, entitled “Distributed Machine Learning Service for Data-Intensive Applications”
is selected for funding, the project team will have access to appropriate computational resources, subject
to an MOU agreement with the Computational Sciences and Technologies Division of TINAF.

Sincerely,

W%gj’/ﬁ

Dr Graham Heyes, Ph.D.

Scientific Computing Department Head
Computational Sciences and Technologies Division
Thomas Jefferson National Accelerator Facility

Newport News, Virginia.

heyes@)jlab.org

12000 Jefferson Avenue, Newport News, VA 23606 ¢ phone 757.269.7100 » fax 757.269.7363 « www.jlab.org
Jefferson Lab is managed by the Jefferson Science Associates, LLC for the U.S. Department of Energy Office of Science
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Appendix 8: Recruitment and Retention of Students and Early-
Stage Investigators

This proposal will fund several early-career scientists, mainly postdoctoral researchers, and will involve
them in a variety of roles including developers of software and computing, designers of infrastructure for
physics applications, and leaders in training courses.

Recruiting: Some early-career researchers that will initially contribute to the project are already iden-
tified. As they move on to their next position, new early-career researchers will be identified following
practices that promote equity and diversity. All new positions will be publicized across many experimental
collaborations well in advance, and the senior personnel will also actively recruit candidates. These practices
are essential to ensure that candidates from underrepresented minorities are not at a disadvantage when com-
pared to candidates that are already well connected to the several laboratories and participating universities.
Each postdoc will have a primary mentor associated to their position (typically from the home institution)
and but will also have close interaction with senior researchers at BNL, where the project is centered.

Mentoring: Effective mentoring by senior scientists is essential for early-career researchers to progress
in their career, which requires increasing research expertise and recognition, and an understanding of how
to seek out and prepare for available opportunities. All senior personnel on this project have considerable
experience working with and mentoring postdocs, including postdocs focusing both on physics analysis and
scientific software. The project senior personnel also have substantial experience working in large inter-
national teams. Postdocs and senior personnel would meet regularly to discuss professional development
and career counseling topics, using resources such as “Making the Right Moves: A Practical Guide to Sci-
entific Management for Postdocs and New Faculty” (Howard Hughes Medical Institute and the Burroughs
Wellcome Fund, 2nd edition, 2006). Postdocs would also be able to mentor and work with students in
research.

Retention: Postdoctoral researchers will be involved in software and computing development projects, as
well as applications to the experiment’s research activities. Activities tied to research lead most immediately
to publications and are therefore given the most weight by institutions hiring junior faculty member. A
balance between technical work and research activities is critical for the development of technical expertise
and projects that lead to publications. It will help the postdoctoral researcher achieve high-impact results
which will contribute to their success when applying for positions inside academia or in industry, while
developing the infrastructure described in this proposal.

Transferable Skills: Not all early-career scientists will stay in academia. Training events and research
projects will include the development of skills that are more broadly transferable, relying for example on
the use of data science tools and techniques that have wide applicability. The technical expertise gained in
software projects is particularly useful for career prospects both in industry and academia.

Leadership: Postdoctoral researchers involved in this proposal will be highly visible within the soft-
ware and computing communities of the experimental collaborations involved. These projects will provide
opportunities to improve presentation and team communication skills, as well as to broaden the academic
social network. Early-career researchers will be given opportunities to present at international workshops
and conferences, and will be encouraged to prepare short author list conference proceedings and journal
papers reporting their results. Postdocs would also be given management and leadership opportunities in the
context of the proposal’s activities. We aim for the project to be a seedbed for future experts and leaders in
AI/ML-empowered physics analysis and scientific software development.
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