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Research Portfolio Vision 
Brookhaven Lab is home to five of 28 distinct Department of Energy, Office of Science (DOE-SC) scientific 
research user facilities. In addition, it hosts the NASA Space Radiation Facility and an Isotope Production 
facility and supports the ATLAS and Belle II experiments. DOE’s large-scale experimental user facilities 
are dynamic resources that propel scientific discovery. Their operation is characterized by real-time 
situational analysis and steering in a high-consequence decision-making setting with extremely 
limited energy available to power such processes. Perhaps unsurprisingly, many science user facilities 
currently operate as internally focused islands of scientific discovery, while the typical procedures for 
engaging these sophisticated experimental sites remain decidedly “low tech.” However, artificial 
intelligence (AI)- and numerical-modeling-aided generative design campaigns now are creating 
thousands of possible options and optimal objective-driven experimental protocols for experimental test 
and validation. To remain at the forefront of scientific discovery, both the inner loop facility optimization 
and outer loop experimental design need to be effectively connected and integrated. Solutions will rely 
heavily on a connected compute and data environment of highly heterogenous computing hardware from 
high-performance computing (HPC) to edge and embedded technologies, while energy-efficient hardware 
and software also will be paramount.  
 
Project Objectives 
Through its applied math and computer science research, BNL’s Advanced Scientific Computing Research 
portfolio will address several application challenges in the next four years, including:  
§ Optimized design of autonomous real-time operation and control of large-scale, complex experimental 

facilities that is adaptive and open to external objective-driven requests within a stringent energy envelope. 
§ Secure and safe decision making in high-consequence environments. 
§ Integration of an autonomous experimental user facility in external generative design loops. 

 
Technical Approach 
To support this portfolio vision, BNL has grouped its research thrusts, corresponding to DOE’s assigned 
categories of Applied Mathematics, Computer Science, and Advanced Computing Technologies and Testbeds, under six 
distinct topics. 
 
1. Near-facility, Composable, Experimental Science-tailored Testbeds  
BNL hosts some of the largest experimental facilities and serves as a leading center for data storage and 
analysis that originate from a multitude of global experiments. That said, responding to the sheer complexity 
required for characterization, optimization, codesign, control, and optimal design of experiments for facilities 
is a tall order of highest scientific magnitude. Recognizing this challenge, BNL invested in a data-science-
oriented testbed facility, the Advanced Computing Lab (ACL), to enable codesign of experimental facilities 
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and workflows, as well as provide a nexus for developing state-of-the-art technologies via active integration of 
computer science and applied mathematics methods with tools, including AI. The ACL is unique in the DOE 
complex, affording the ability to ingest actual data from diverse experiments—at the Center for Functional 
Nanomaterials for microscopy, National Synchrotron Light Source II, and soon Relativistic Heavy Ion 
Collider—and exposing these data and computation challenges to advanced technologies that can accelerate 
science conducted in DOE experimental facilities. ACL offers a true collaborative space for national labs, 
academia, and industry, where we codesign essential, multi-use technologies and methods expressly for 
experimental science that otherwise may not emerge from commercial sources. We aim to build unique 
research and development teams and engage hardware innovations provided from industry (current and past 
ACL partners include NVIDIA, IBM, DDN, HPE, Lightmatter, and Tenstorrent). Some specific 
technologies under investigation relate to memory, storage, and data-intensive technologies. In Advanced 
Computing Technology and Testbed Thrust 1.1, we propose using the ACL collaboratively to: 1) capture and 
standardize key workflows from experimental facilities (data from instruments); 2) explore “composability” in 
the codesign of streaming data sources and storage for testing in-network AI and HPC hardware from the 
edge to the extreme; 3) facilitate research to improve energy efficiency and increase reliability for scientific 
instruments and workflows; and 4) test, codesign, and deploy customized scientific hardware/firmware and 
novel industrial AI hardware. In addition to the computer scientists and applied mathematicians from BNL’s 
CSI group, the proposed team features key experimental scientists and detector/facility designers. Moreover, 
the ACL testbed not only will support other BNL research areas, but it will function as a true facility open to 
the entire DOE research community and beyond, e.g., uses involving national security or applied energy. 
 
2. Portable Middleware Systems that Support Learning Everywhere and Every Scale 
The IRI and AI for Science missions will require scalable, composable, and portable middleware systems to 
support “learning everywhere and every scale” in connection with large-scale experimental facilities. 
Specifically, the middleware must support heterogeneous computing and data infrastructure and diverse data 
and computing requirements while being responsive to technology trends and evolving application 
requirements. This necessitates an ambitious and radical re-architecting and design of future middleware 
systems and capabilities, which will be the focus of Computer Science Thrust 2.1. We will research novel, 
multi-level active learning algorithms to plan, map, and schedule heterogeneous workflows on heterogeneous 
computing platforms, accounting for diverse data and compute requirements. Computer Science Thrust 2.2 
will develop a workflow runtime system to coordinate the dynamic execution of workflow with 
data/compute services and tasks, dynamically controlling concurrency between services and tasks and 
ratio/partitioning/colocation of service/tasks at runtime. Performance metrics will include latency 
request/response, resource utilization, and start/stop overheads. Computer Science Thrust 2.3 will use system 
design for an application-defined network fabric to enable arbitrary communication among workflow tasks 
and middleware components, moving the design of communication and coordination protocols from the task 
level to the workflow application level. 
 
3. Safe, Secure, and Trustworthy Composable, Energy-efficient Real-time Data Analytics  
To enable energy-efficient real-time data analytics, it is essential to introduce approximated computing on 
hardware acceleration with numerical library abstraction. However, these methods must be accompanied by 
trust-building measures. Our current approximation methods have delivered a factor of 1000 speedup for 
streaming data analysis, but new data rates at hundreds of TB/s+ require additional breakthroughs. In 
Computer Science Thrust 3.1, we will research novel randomized algorithms (sketching, projection, sampling) 
and methods for uncertainty quantification (UQ) and optimal decision theory on hardware accelerators (in-
memory/neuromorphic/quantum/accelerators beyond CPU and GPUs). This will be combined with 
approaches that exploit the scientific applications’ physical constraints. Too, the Applied Math Thrust 3.2 
will cultivate methods to implement UQ propagation from the randomized algorithms to downstream tasks 
efficiently. This will focus on parametric uncertainties and address functional uncertainties about a system’s 
underlying structure. We intend to research a combination of functional UQ methods and dimension 
reduction techniques and develop tractable and fast approximations to this infinite-dimensional UQ problem. 
 
4. Foundations for Multiscale, Complex, Safe, and Secure Digital Twins to Steer Autonomous 

Facilities and Experiments 
The success of predictive digital twins for autonomous facilities depends highly on numerical methods that 
enable modeling and simulation (ModSim) of quantities of interest along with their uncertainties. In Applied 
Math Thrust 4.1, we propose to research numerical methods that enable predictive capabilities of digital 
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twins. These will include expanding state-of-the-art research in numerical methods for (optimal) measure 
transport. We will investigate methods inclusive of (although not exclusively for) cases when data are limited 
as such scenarios are common. Research into the suitability of current or new numerical optimization 
techniques for the resulting measure transport optimization problems also will be required. Digital twins 
often need to simulate realistic system dynamics and respond to initial and boundary conditions. Detailed 
dynamical information can be difficult to emulate. In Applied Math Thrust 4.2, we propose a highly 
(sample/energy) efficient formulation of digital twins that combines system identification, which learns and 
quantifies uncertainties in dynamics, with coarse-grained or reduced-order models that efficiently predict 
system responses. It also will permit exploration of “structural” system uncertainties that normally are too 
difficult within the paradigm of computer model calibration and experimental data tuning. Meanwhile, 
Multifaceted Thrust 4.3 will create an integrated framework for digital twins capable of providing real-time 
feedback within a given energy envelop and time constraint. Thus, efficient algorithms and programming 
models exploiting novel architectures will be needed. This thrust will center on basic research of 
programmability and portability of dataflow architectures, computational storage, and memory-centric 
architectures in an in situ or near-facility processing environment. Algorithms to exploit the specific 
architecture features will be developed with an emphasis on applications to digital twins. 
 
5. Optimal Experimental and Facility Design, Decision Making, and Operation Under Uncertainty 

for High-consequence Environments 
Decision-theoretic, uncertainty-aware optimal experimental design (OED) provides a powerful means to 
prioritize the most valuable experiments while expending the fewest resources (time, cost, etc.). For high-
consequence experiments and facilities, multiple operational objectives often must be considered. Decision 
making during the codesign procedure must have certified robustness to reduce hazardous risk and prevent 
incurring costs. In Applied Math Thrust 5.1, we propose to accelerate OED calculations through both 
algorithmic improvements and HPC, greatly decreasing computational and energy requirements and enabling 
time-bound OED applications, e.g., real-time decision making. These improvements will be implemented in a 
new software library for efficient OED that includes integration with differentiable and probabilistic 
programming, potentially leading to a new domain-specific language for OED. HPC acceleration will exploit 
the often embarrassingly parallel nature of the problem via parallel/distributed and heterogeneous computing 
to demonstrate strong scaling on DOE exascale applications. Applied Math Thrust 5.2 will develop decision-
theoretic techniques to optimize objective-driven goals (energy efficiency, cost, throughput, scientific 
information gain) constrained by available resources (computational, experimental, human, or physical). This 
will include methods for sequential decision making over dynamic process graphs, e.g., choices of which 
computational or lab experiment to conduct with serial dependencies and opportunities for parallel execution. 
Multifaceted Thrust 5.3 will develop a new decision-oriented visualization framework, VISTA 
(VISualization framework for Task-aware decision-making in Autonomous experiment design). Based on 
modern digital twin settings for autonomous experiment design, VISTA aims to integrate computational 
models, AI/machine learning (ML) surrogates, and human-AI interactions to facilitate more effective and 
efficient data assimilation, data representation, model calibration, and ultimately adaptive/interactive decision 
making. Applied Math Thrust 5.4 will aim to create multifidelity, multi-objective Bayesian optimization 
(MFMOBO) for intelligent data-acquisition with certified robustness as part of VISTA, specifically in cases 
where the multifidelity approximations vary over the input space. We will further explore adaptive 
MFMOBO to better comprehend the Pareto front with certified robust risk, considering high-consequence 
outcomes using the approximate evaluation under different fidelity. 
 
6. AI-driven, Energy-efficient Integrated Research Platform for Experimental Facilities 
Foundation Models (FMs) have demonstrated outstanding performance. Yet, bringing FMs to production 
research requires overcoming significant challenges, i.e., how we compute needs to be radically different. A 
leading large language model, GPT4, requires 1 GW for training and 260 MW per day, running a GPT4 
inference service. This is impractical on DOE’s exascale resources and impossible for real-time inference at 
the edge. Multifaceted Thrust 6.1 will combine OED, few-shot model reduction, and efficient (energy/time) 
training and inference optimization. Meanwhile, Applied Math Thrust 6.2 will seek energy-efficient UQ for 
FMs and hybrid physical-ML models.  
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Multi-institutional Team Investigators and Collaborators 
 
Lead Principal Investigator (PI) and Co-PIs 
 
Brookhaven National Laboratory: Kerstin Kleese van Dam (Lead PI) 
Thomas Jefferson National Accelerator Facility (JLab): Malachi Schram (Co-PI) 
Princeton Plasma Physics Laboratory (PPPL): Ammar Hakim (Co-PI) 
Oak Ridge National Laboratory (ORNL): Rafael Ferreira da Silva (Co-PI) 
New Jersey Institute of Technology (NJIT): Jing Li (Co-PI) 
University of Delaware (UD): Rudolf Eigenmann (Co-PI) 
 
 
Table 1. Summary Budget 
 
 Name Institution Year 1 

Budget 
Year 2 
Budget 

Year 3 
Budget 

Year 4 
Budget 

Total 
Budget 

Lead 
PI 

Kleese van Dam, 
K. 

BNL $8,500 $8,500 $8,500 $8,500 $34,000 

Co-PI Schram, M. JLab $400 $400 $400 $400 $1,600 
Co-PI Hakim, A. PPPL $400 $400 $400 $400 $1,600 
Co-PI Ferreira da Silva, 

R. 
ORNL $400 $400 $400 $400 $1,600 

Co-PI Li, J. NJIT $150 $150 $150 $150 $600 
Co-PI Eigenmann, R. UD $100 $100 $100 $100 $400 

($ in thousands) 


