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Overview
• Integrate and expand spacecharge modeling in Fun4All 
• Implement and study calibration of spacecharge 

distortions through tracking, lasers, and digital current 
measurements.
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Projects and Milestones
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Brainpower Task Early July Mid July Late July Early August Mid August Late 
August

Chris P generate HIJING events improved HIJING with proper vertex 
distribution and Calorimeter backsplash

Ananya P, 
Evgeny S

current / SC maps from 
HIJING

low-res SC maps for early 
distortion studies

tool to gen. SC time series for desired luminosity and 
IBF factors

Jordan S, 
Ross

generate distortions from 
SC maps

compare and select 
tiling scheme for field 
calc

study and select MC truth 
resolution

validate against 
analytic models

Henry K implement MC truth 
distortions

static dist. 
map in sim.

time series distortion 
maps in simulation.

Evgeny S distortions from currents Reconstruct SC 
from dig.current

Reconstruct distortion map 
from digital current, study 
residuals etc.Sara K Simulate laser events generate CM stripe 

G4Hits in event
Sara K Reconstruct laser events reconstruct 

CM hits
Sara K, Ross distortions from laser 

events
implement CM calibration loop; extract 
distortion maps

in collab. with 
other Subcom

Distortions from tracks repeat Hugo's analysis 
with static distortion map

study with time-varying map, look at correlations

TBD Cross-validate methods study fast distortion maps 
with slow already subtracted

Ross, Chris P, 
Others

Define MC-truth and 
correction formats

revise format for 
slow+fluctuations

Joe Corrections in reco implement movable hits in ACTS... distortion maps 
in reco.

Tony, Hugo, 
Others

Tracking w/wo correction prepare diagnostic tools. check tracking eff. w/ and wo/ distortions and 
corrections.

TBD Studies of Physics Impact develop analysis modules to track physics 
observables w/wo corrections

DONE Nearly done In ProgressKey:



Model and Generation
• Generate Field Map from MC Spacecharge:
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Charge Distribution 
(3D, Scalar)

Greens functions 
(6D, Vector)

3D Electric Field Map 
(3D, Vector)

X =

• Swim test particles through binned fields using Langevin Eqn:

==>



Validating Against Analytic Models
• Heuristic charge with ALICE params produces good match to ALICE distortion: 

• Heuristic charge with old sPHENIX params (rebuilt charge model from Carlos's 
2016 presentation:  total Q=135nC) matches to those predictions:
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ca. 2016

ca. 2016



ALICE projected performance
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Ernst Hellbär - Goehte-Universität Frankfurt11-Jul-2019 ALICE: Space-charge calibration overview

Space-charge fluctuations
Contributions

• Relative fluctuation of the number of pileup events: 

• Multiplicity fluctuations: 

• Variations of the ionization of a single track: 

• Spatial range over which space-charge fluctuations are relevant for the distortions 

Fast MC agrees well with analytical formula

Fluctuations of 2.5 - 3.5 %
• 5 - 7 mm in r, 2 - 3 mm in r! 

- Required precision: 200 µm
 6

Ion pileup events
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note that rel. fluctuations go 

down as more ions pile up

our mult. fluctuations 

are probably larger?



Updating Expectations for sPHENIX
• 2016 sPHENIX simulations:  

90:10 Ar:CF4 gas, drift velocity =4cm/us, B=0.5T ==> ωτ=0.5 
• New assumptions:   

50:50 Ar:CF4 gas, velocity = 8cm/us, B=1.4T ==> ωτ=2.8
• Ion pileup will also change, but if we use the same heuristic charge density:
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ca. 2016



MC Spacecharge Maps
• Evgeny Shulga (WIS): realistic gain/IBF maps for the 

GEMs by sampling ALICE IROC measurements:

8September 18, 2020 TPC Distortion Software

Gain 

IBF (per electron)=Gain*IBF*2000*0.44% 

IBF (per electron) 



MC Spacecharge Maps
• Poisson distribution of events with mean of 50kHz with realistic vertex 
• Spacecharge = primary + z-projection × IBF × Gain 
• Shifted in z by drift speed × time 
• 50:50 Ar:CF4 has 0.5× drift speed, slightly higher primary ionization, GEM gain lowered 

to keep overall pad signal constant 
• Total charge ==> ~40nC (compared to 2016 model's 135nC)
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Ions per bin



Fields from MC Spacecharge
• Gain map creates noticeable φ structure 
• event-to-event fluctuations produce additional φ and z structure
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Distortions from MC Spacecharge
• Using ideal z-only B and E fields, distortions << 2016 estimate.  

3x less charge, 3x higher B field, doubled drift velocity.
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Real Fieldmaps
• Phi-Symmetric (1.5 Tesla) B field from non-chimney half of magnet:
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Distortions in Real Fieldmaps
• Expect contributions from magnetic field map to dominate 
• at E=400V/cm, B=1.4T, ωτ~3, T1=T2=1 (but we need to measure these)
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Distortions in Real Fieldmaps
• Transverse components of B field dominate distortion
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Distortions in Fun4All
• Henry Klest (SBU) has implemented reading these 

distortion maps in Fun4All 
• Distortion of TPC hits from MC events (z vertex=54, 

eta=0) matches input map
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Extract Fluctuations
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• Subtract off average spacecharge distortion to see 
distortions due to event-by-event fluctuations:

12um



Surveying Fluctuations
• Fluctuations are correlated across z (particles share partial path) 
• (every 20 frames is a complete refresh of the TPC):
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Surveying Fluctuations
• Average distortion subtracted from each element of time 

series.  Residuals plotted below 
• MC fluctuations at z~50cm (full 2π) are generally within 

100 um over instrumented range 
• if average distortion is precisely known.
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Simulation Status
• Generated spacecharge models fairly realistic 

• real t and z-vertex distributions 
• spatially-varying gain and IBF 
• still limited by geant thresholds 

• Generated distortions are reasonably matched to 
earlier models, some improvements still desired: 
• Update field maps to full-3D (chimney) 
• Simulate both TPC halves simultaneously (phi 

distortion from E field will change sign) 
• Study stability vs resolution with realistic inputs 

• Observed fluctuations < 100 um on ~1 cm average 
distortions
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Digital Current
• reco IBF model: fixed IBF fraction, charge reco is exact 
• Still need to implement smearing and random processes 
• reco/true shows ~10% difference due to primaries
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Residuals with perfect Dig. Current
• Distortion from IBF model without primaries does not get 

right average shape.  (MC Truth)-IBF:
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Status and Outlook
• Distortion generator and Fun4All integration mature enough to 

proceed with reconstruction studies.  
• r, phi, and z distortions calculated 
• full distortion and fluctuations from average generated,  
• small O(100) time series sets available 
• continuing to improve and optimize 

• Fluctuations about the average distortion seem to be ~<100um 
• Developing CM and Digital current reconstruction 
• Exploring how well we can reconstruct average distortion 

• Tracks (and line lasers) can directly measure average distortion 
• CM pattern cannot measure static z-dependent structure 
• Digital current without primary model has no z structure, 

depends on Green's functions.
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Further Matching to ALICE
• Flipped field sign swaps 

phi sign, but magnitudes 
match to ~10%. 

• These models don't have 
extra curvature at large R

24September 18, 2020 TPC Distortion Software

sPHENIX reconstruction of ALICE geometry and conditions, 2020



Nomenclature
• Electron from     arrives at     and is naively assumed to have come 

(assuming straight-line drift) from    
• Distortions are δφ(cm)  in the Φ-hat direction.  δr in the r-hat, δz in the z-hat 
• If small, rδφ~Δφ, δr~Δr.
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Φ

R

Z



Comparison of Δ vs δ for sPHENIX
• Definitions of φ and R are signficiantly different at small R (large ωτ 

and hence φ distortions):
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Comparison of Δ vs δ for ALICE
• Definition of R distortions not very sensitive.  Definition of φ is, at 

small R:
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Stripe Reconstruction
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Oth Pass Reconstruction
● Code to check if a point is on a stripe and if so, which stripe
● Encountered problem while testing: stripes weren’t angled to go through the origin

Hand-drawn arrows to approximately show that the 
angle of the stripes wouldn’t go through the origin.

Blue hand-drawn arrows connecting to 
programmed lines to show that angle has been 

corrected.

● Corrected the angle, can now continue with stripe identification
● Next to work on: where is the nearest stripe to the point

Courtesy Sara Kurdi



Reconstructing Using Central Membrane

• Henry Klest distorting the CM hits in 
Fun4All 

• Sara Kurdi matching them back to 
particular stripes 

• Revising toy code for realistic case
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Toy Model of CM Differential Reco
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The position of an electron at readout is the sum of the distortion in each z-step along the way.  Electrons 
from the CM stripe pattern integrate over the entire z-column (and tracks over a partial column): 

The distortions evolve with the motion of the ions (primary<<IBF): 

By comparing the reconstructed CM stripe position at two consecutive times, we learn about the portions of 
the z-column they do not have in common, and can use this to extract differential information about the 
distortions.  The number of iterations where you can link differential information is limited by intrinsic detector 
resolutions.

f1 f2 fn

x0

x1

x2

xF

x1

f3f2 fn+1

x0

xF

(improved drawing courtesy Sara Kurdi)



Assumptions
• Distortions all move linearly with time (static 

distortions are okay, but everything in motion has 
the same velocity) 
• Static B and E distortions can't be measured with 

this method  
• Distortion magnitudes are independent of z- 

position (distortions do not evolve due to z-position 
in the tpc, only position relative to spacecharge) 
• Not strictly true.  Boundary conditions present 

• Perfect Reconstruction -- all electrons are magically 
associated with their true origin pad...
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Real Fieldmaps
• Phi-symmetric simulated E-Field + MC charge map 
• Edges come from slightly different dimensions in field and distortion TPC
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