Calibration of the sPHENIX hadronic calorimeter system

Ejiro Umaka¹, Hanpu Jiang², Shuhang Li²

1. Iowa State University, 2. Columbia University on behalf of the **sPHENIX** collaboration

Quark Matter 2022 - the 29th International Conference on Ultra-relativistic Nucleus-Nucleus Collisions
4-10 April 2022, Krakow, Poland

sPHENIX Hadronic calorimetry (HCAL)

SPHENIX

- Plastic scintillating tiles + tilted steel plates with embedded WLS fibers (oHCAL); scintillating tiles + Al plates for the iHCAL
- Hadrons traversing the HCALs shower due to the plates and deposit energy in the tiles
 - Signal from the tiles is directed to SiPMs
 - Signal from the SiPMs is aggregated into towers
- HCAL sectors geometry
 - 32 Sectors
 - 48 towers/sector
 - □ 5 tiles/tower (oHCAL); 4 tiles/tower (iHCAL)
 - \square 24 towers in η
 - \square 2 towers in ϕ

Traverse view of one sector of the (i+o)HCAL

A section of iHCAL sector with tiles and SiPMs

φ

Cosmic muon data taking with HCAL Sectors

Cosmic muon event selection

- A sector is divided into thirds (shown in teal, yellow & magenta in the plot below)
- Each third have the same trigger for cosmics. The sum of the signal of a third of the towers must pass surpass a given threshold.

Offline cuts

- \square Vertical towers, i.e., 2 towers in ϕ are hit
- No horizontally neighbor towers are hit (i.e., immediate towers in η)

oHCal sectors at BNL's AGS Fixed-Target Exp. Hall

Single oHCAL Tower ADC Distribution Fit around peak: Gamma + linear function

ADC

HCAL sector cosmic muon simulation

- A muon is simulated going through one sector with energy and angular dependence described in [1]
 - ☐ This simulation result is used to calibrate the ADC signal peak in each tower with:

$$\Box \quad C = \frac{E_{dep}^{cosmic}}{E_{dep}^{ADC} \times SF(muon)}$$

Where, E_{dep}^{cosmic} is the peak of the eloss distribution extracted from GEANT4 cosmic simulation, E_{dep}^{ADC} is the ADC peak measured from the cosmic data, and SF(muon) is the muon sampling fraction [2]

Summary

- sPHENIX will be the first new collider detector at RHIC in over 20 years!
 - ☐ First hadronic calorimetry at RHIC (at mid-rapidity).
- The outer and inner HCAL sectors are now fully assembled at BNL!
 - Future calibrations will include the sectors in their fully assembled configuration.

OHCal Installation Complete!

IHCal Barrel Complete!

sPHENIX is supported by

Office of Science