Calibrated Cosmic Muon simulations for the sPHENIX Hadronic Calorimeters

Shuhang Li, Hanpu Jiang, Emma McLaughlin, Blair Seidlitz, Bill Zajc

DNP Oct 29, 2022

This work was supported by the United States Department of Energy Grant DOE-FG02-86ER-40281

sPHENIX Hadronic Calorimeters

Acceptance:

$$-1.1 < \eta < 1.1$$

 $0 < \varphi < 2\pi$

64 towers along φ 24 towers along η

 It's important to establish absolute energy calibration via simulation.

SPHENIX

Muon Generator & Simulation Setup

- The cosmic muon generator that was used in this study was based on opensource cosmic muon generator <u>EcoMug[1]</u>.
- The muons are generated on the surface of a half-sphere with radius of 6.5 meters covering the entire sPHENIX detector. The muon flux and angular distribution is realistic anywhere in the half sphere.
- The outer HCal(OHCal), inner HCal(IHCal), and the magnet was built in the GEANT4 simulation.

[1]: D. Pagano et al. "EcoMug: An Efficient COsmic MUon Generator for cosmic-ray muon applications".
doi: <u>https://doi.org/10.1016/j.nima.2021.165732</u>.

Comparison to Test Stand Data

- A single OHCal sector was built in the same orientation as was used during cosmic testing, a same set of cuts are applied. This worked as a good test for the validity of the cosmic muon generator as well as the GEANT4 simulation.
- The self normalized simulated energy distribution agrees well with the test stand data.
- It's possible using cosmic simulation to establish an initial energy calibration.

Determine the Muon Rate

 For the simulated muon events, the corresponding time in real-world to have the same amounts of events is determined by performing a single parameter fit to the muon energy distribution.

arXiv:1606.06907

6

Muon Rate Calculation

Muon counts per second for individual towers

OHCal

IHCal 9 m² OHCal 36 m² The overall much flux agr

Projective area:

The overall muon flux agrees with the common estimation of 1 muon/ cm^2 /min.

Muon rate per tower after cut agrees with test stand data within 40%.

IHCal

Event Selection

SPHENIX

- The offline cut is determined to select muons that pass through all tiles of tower of interest.
- The rate of "useful" muon event per tower is about 0.03 Hz in the worst case, means that a useful MIP calibration peak can be developed in a 12-24 hours run. It takes one order of magnitude less time for OHCal.

\varphi^{twr}

Current Developments

- A new GEANT4 setup which has a much more realistic description of the Hcal.
 - Repeat the same procedure with the new setup.
 - Build a single IHCal/OHCal sector in the simulation with the same orientation as testing.
 - "Tune" the noise in the simulation for better agreement with the cosmic testing data.
- Investigate the optimized cosmic trigger for different noise levels.
- Take cosmic event data with HCal in the data taking position.

- Implemented a realistic muon generator in sPHENIX simulation
- Demonstrated ability to establish E-scale using single sector simulation
- Demonstrated the possibility of using cosmic muon events as a calibration source for HCal's when the full sPHENIX apparatus is in its data-taking position.

Thanks!