The SPHENIX Detector: The Future of Heavy-Ion Collisions at RHIC, and a Foundation for an EIC Detector

John Lajoie

Iowa State University

The Big Picture at RHIC (and the EIC...)

The Big Picture at RHIC (and the EIC...)

How do collective, many-body phenomena arise from first-principles QCD?

Strongly-Coupled Quark-Gluon Plasma

Established **viscous hydrodynamics** as effective theory of longwavelength dynamics of QGP

Direct connection of final state correlations to structure and fine-structure of initial state

Extracted QGP properties quantitatively, most prominently transport coefficient $\eta/s \sim 1/(4\pi)$: most perfect liquid

Connections to strong coupled matter in many fields of physics (string theory to cold atoms)

3

sPHENIX Science Mission

How does QGP work?

What is its microscopic structure?

There are two central goals of measurements planned at RHIC, as it completes its scientific mission, and at the LHC (1) Probe the inner workings of QGP by resolving its properties at shorter and shorter length scales. The complementarity of the two facilities is essential to this goal, as is a state-of-the-art jet detector at RHIC, called sPHENIX. (2) Map the phase diagram of QCD with experiments planned at RHIC.

8/30/2018

NP LRP: "Probe the inner workings of QGP"

Three key approaches to study QGP structure at multiple scales:

Complementarity: Why RHIC and LHC?

M. Habich, J. Nagle, and P. Romatschke, EPJC, 75:15 (2015)

Structure of QGP expected to depend on T Initial QGP conditions and QGP evolution are different at RHIC vs LHC.

RHIC QGP spends more time near $T_{c} \label{eq:relation}$

Complementarity: Why RHIC and LHC? ^{■PHE}

M. Habich, J. Nagle, and P. Romatschke, EPJC, 75:15 (2015)

50 Jets evolve in QGP at the LHC [1/fm] microscope resolving power Jets evolve in Octo kinematic reach 0-20% Au+A 10 medium coupling Y(1s)5 22 Y(1s,2s,3s) 10 weeks p+p 01. = 99 MeV Y(2s)200 Y(3s) 0000 $3T_c$ Tc $2T_c$ $1000T_{c}$ perfect liquid temperature

Structure of QGP expected to depend on T Initial QGP conditions and QGP evolution are

different at RHIC vs LHC.

RHIC QGP spends more time near T_c

➡ Use **combined RHIC and LHC data** to extract T dependence

8/30/2018

SPHENIX Subdetectors

Calorimeter stack

Continuous readout TPC Si strip intermediate tracker 3-layer MAPS-based µ vertex Tungsten/SciFi EMCal Steel/plastic scintillator HCAL SiPM readout

15kHz readout in Au+Au to match expected collision rate in |z| < 10cm

SPHE

Realizing sPHENIX

8/30/2018

Full field magnet

Beam test of **TPC** prototype in June 2018 Ready for producing of fullsize field cage "prototype"

"Sector 0"

EMCAL materials

10

Realizing sPHENIX

Flux return/oHCAL absorber Production sectors will start arriving September '18

MVTX full chain test and beam test in Spring 2018 Expecting stave procurement in late 2018

ISMD 2018

Performance simulation: Track and Jet resolution ■PHE

Calorimeter-related performance studied using GEANT simulations verified with test beam data

MVTX enables world-class HF science program

MVTX spatial resolution

MVTX based on copy of ALICE staves with support structure modified for sPHENIX

Upsilons at sPHENIX vs. LHC

Sequential suppression of Y(nS) states reveals QGP Debye screening length As at LHC, Y(3s) will be challenging to see in Au+Au at RHIC

Jets in sPHENIX vs. LHC

Jets in sPHENIX vs. LHC

Jets in sPHENIX vs. LHC

Heavy flavor at sPHENIX vs. LHC

SPHE

Heavy flavor at sPHENIX vs. LHC

SPHE

Realizing and running sPHENIX

sphenix @ EIC

	The National Academics of MICENCES ENGINEERING THE NATIONAL ACADEMIES PRESS					
	This PDF is available at	http://nap.edw/25171	SHARE 🚺 🙆 🏠 🕁			
		An Assessment of U.SBased Elec DETAILS 114 pages 7 x 10 PAPERBACK ISBN 978-0-309-47856-4 DOI 10.1722/5/25171	tron-Ion Collider Science			
	GET THE BOOK	CONTRIBUTORS Committee on U.SBased Electron-Ion Collider S Physics and Astronomy, Division on Engineering Academies of Sciences, Engineering, and Medic	icience Assessment; Board on and Physical Sciences; National ine			
Timely: US recommen	National A	cademies of Scien tion of EIC	ce			
	Visit the National Acade	mies Press at NAP.edu and login or register to g	et			
	Access to free PDF downloads of thousands of scientific reports 10% off the price of print titles. Email or social media notifications of new titles related to your interests Special offers and discounts					
	Distribution, posting, or copyin (Request Permission) Unities Copyright © National Academ	ig of this PDF is shotly prohibited without written permissik otherwise indicated, all materials in this PDF are copyright y of Sciences. All rights reserved.	on of the National Academics Press. ed by the National Academy of Sciences.			

Study group (incl. non-sPHENIX members) working on EIC detector design based on sPHENIX

Deliver LOI by end of September '18

7

SPHE

SPHE

Strong interest in Cold QCD with sPHENIX

June '17: Modest forward upgrade, following invitation by ALD to STAR and sPHENIX.

Exciting p+p and p+A program, but also strengthening of core sPHENIX program through high-rate, high resolution, large acceptance calorimetry and tracking

Oct '17: Medium-energy physics with sPHENIX Barrel

Demonstrates wide range of physics opportunities with MIE detector

Forward sPHENIX

- sPHENIX
 - HCal/Flux return
 - Solenoid
 - Central EMCal
 - Silicon strip tracking
 - TPC
 - MAPS

Forward sPHENIX

- EIC-sPHENIX detector
 - HCal/Flux return
 - Solenoid
 - Extended Central EMCal
 - Central hadron PID
 - TPC
 - MAPS
 - Forward and backward tracking
 - Forward and backward hadron PID
 - Backward crystal EMCal
 - Forward EMCal
 - Forward HCal

Forward sPHENIX

Multiple Datasets...

Can we use multiple datasets (with similar systematics) to overcome the normalization limitation?

Central ($|\eta|$ <1) + Forward dijets (1.6< η <3.6) (used primarily to fix normalization)

Forward DY (after normalization fixed)

8/30/2018

Multiple Datasets...

Central ($|\eta| < 1$) + Forward dijets (1.6< η <3.6)

Can we use multiple datasets (with similar systematics) to overcome the normalization limitation?

(used primarily to fix normalization) 1.5 $M = 4.7 \,\,\mathrm{GeV}$ $M = 6.1 \; {
m GeV}$ M = 7.2 GeV1.61.61.6 $= 10 \text{ GeV}^2)$ $= 10 \text{ GeV}^2$ GeV^2) 1.41.41.41.21.21.2100.80.80.8 $R^{\rm Au}_{u_V+d_V}(x,Q^2$ $R^{\rm Au}_{\bar{u}+\bar{d}+\bar{s}}(x,Q^2$ $R^{\rm Au}_g(x,Q^2$ 0.6 0.6 0.6 0.40.40.4EPPS16 0.20.20.2Ω Π 10^{-3} 10^{-3} 10^{-2} 10^{-3} 10^{-1} 10^{-4} 10^{-2} 10^{-1} 10^{-4} 10^{-4} $^{-2}$ 10^{-1} 1 xxx $V_{\rm d}^{\rm d} \rho p = 0.5$ _1 $\mathbf{2}$ 0 1 2 - 10 $y_{
m dijet}$ $y_{
m dijet}$ ➡sPHENIX pseudodata EPPS16 reweighting by H. Paukunen and P. Paakkinen 10^{-3} 10^{-2} 10^{-3} 10^{-2} 10^{-3} 10^{-2} x_2 x_2 x_2 8/30/2018 **ISMD 2018** 22

Forward DY (after normalization fixed)

Outlook

- sPHENIX will probe microscopic structure of strongly coupled QGP
- New state of the art detector at RHIC, complementing capabilities at the LHC:
 - Jet suppression and substructure
 - Upsilon spectroscopy
 - Open heavy flavor over full kinematic range
- International collaboration, growing to include EIC and forward interests
- Work on sPHENIX is in full swing
- Exciting physics program at RHIC in 2020's, and possibly beyond at EIC

sPHENIX collaboration: 70+ institutions

Augustana University Banaras Hindu University Baruch College, CUNY Brookhaven National Laboratory China Institute for Atomic Energy CEA Saclay Central China Normal University **Chonbuk National University** Columbia University Eötvös University Florida State University Fudan University Georgia State University Howard University Hungarian sPHENIX Consortium Insititut de physique nucléaire d'Orsay Institute for High Energy Physics, Protvino Institute of Nuclear Research, Russian Academy of Sciences. Moscow Institute of Physics, University of Tsukuba Institute of Modern Physics, China Iowa State University Japan Atomic Energy Agency Joint Czech Group Korea University Lawrence Berkeley National Laboratory Lawrence Livermore National Laboratory Lehigh University Los Alamos National Laboratory Massachusetts Institute of Technology Muhlenberg College Nara Women's University National Research Centre "Kurchatov Institute" National Research Nuclear University "MEPhl" New Mexico State University

Oak Ridge National Laboratory Ohio University Peking University Petersburg Nuclear Physics Institute Purdue University **Rice University** RIKEN **RIKEN BNL Research Center** Rikkyo University **Rutgers University** Saint-Petersburg Polytechnic University Shanghai Institute for Applied Physics Stony Brook University Sun Yat Sen University Temple University Tokvo Institute of Technology Tsinghua University Universidad Técnica Federico Santa María University of California, Berkeley University of California, Los Angeles University of California, Riverside University of Colorado, Boulder University of Debrecen University of Houston University of Illinois, Urbana-Champaign University of Jammu University of Maryland University of Michigan University of New Mexico University of Tennessee, Knoxville University of Texas, Austin University of Tokyo University of Science and Technology, China Vanderbilt University Wayne State University Weizmann Institute

Yale University

Yonsei University

BNL, June '18

BNL, June '17

BNL, June '16

Santa Fe, Dec '17

GSU (Atlanta), Dec '16

Rutgers, Dec'15

8/30/2018

BACKUP

Growth of collaboration since CD-0

2017

Broad expertise in relevant physics, silicon, TPCs, calorimetry

2018

2016

Complementarity of RHIC and LHC

- Existing RHIC data will provide some info to the nPDF global fits...
- Real progress will require comprehensive set of measurements made with the same detector, in the same run, with the same MB trigger conditions...
 - Of course, two detectors doing complementary things would allow for a suite of systematic crosschecks

- Existing RHIC data will provide some info to the nPDF global fits...
- Real progress will require comprehensive set of measurements made with the same detector, in the same run, with the same MB trigger conditions...
 - Of course, two detectors doing complementary things would allow for a suite of systematic crosschecks
- <u>Additional Observables</u>
 - Central DY

- Existing RHIC data will provide some info to the nPDF global fits...
- Real progress will require comprehensive set of measurements made with the same detector, in the same run, with the same MB trigger conditions...
 - Of course, two detectors doing complementary things would allow for a suite of systematic crosschecks
- <u>Additional Observables</u>
 - Central DY
 - Photon + Jet
 - Statistics an issue, but theory under control

- Existing RHIC data will provide some info to the nPDF global fits...
- Real progress will require comprehensive set of measurements made with the same detector, in the same run, with the same MB trigger conditions...
 - Of course, two detectors doing complementary things would allow for a suite of systematic crosschecks

- Existing RHIC data will provide some info to the nPDF global fits...
- Real progress will require comprehensive set of measurements made with the same detector, in the same run, with the same MB trigger conditions...
 - Of course, two detectors doing complementary things would allow for a suite of systematic crosschecks

Fragmentation in a Nuclear Environment

Fragmentation in a Nuclear Environment

Multi-year run plan for sPHENIX

Year	Species	Energy [GeV]	Phys. Wks	Rec. Lum.	Samp. Lum.	Samp. Lum. All-Z
Year-1	Au+Au	200	16.0	7 nb^{-1}	$8.7 \ {\rm nb^{-1}}$	34 nb^{-1}
Year-2	p+p	200	11.5		48 pb^{-1}	$267 \mathrm{~pb^{-1}}$
Year-2	p+Au	200	11.5		$0.33 \ {\rm pb^{-1}}$	$1.46 {\rm \ pb^{-1}}$
Year-3	Au+Au	200	23.5	14 nb^{-1}	26 nb^{-1}	88 nb^{-1}
Year-4	p+p	200	23.5		$149 \mathrm{~pb^{-1}}$	$783~{ m pb}^{-1}$
Year-5	Au+Au	200	23.5	14 nb^{-1}	48 nb^{-1}	92 nb^{-1}

- Consistent with DOE CD-0 "mission need" document
- Incorporates BNL C-AD guidance on luminosity evolution
- Incorporates commissioning time in first year

Minimum bias Au+Au at 15 kHz for |z| < 10 cm:

47 billion (Year-1) + 96 billion (Year-2) + 96 billion (Year-3) = Total 239 billion events

For topics with Level-1 selective trigger (e.g. high p_T photons), one can sample within |z| < 10 cm a total of 550 billion events.

Tracking efficiency and resolution

Inclusive DIS: x, Q2 resolution based on scattered electron detection sufficient for EIC science program

Fraction of events reconstructed in correct x, Q² bin

Precise recovery of event kinematics from smearing effects possible using unfolding.

Continuous tracking from $-4 < \eta < 4$

Since 2014 LOI:

- Full GEANT4 simulations now
 - Forward/backward pattern recognition from truth hits, then Kalman filter for fitting
- Extended backward tracking to η = -4

- Improved TPC resolution based on sPHENIX design
- MVTX added
- 5 forward GEM stations now rather than 3

18 x 275 GeV $1 < Q^2 < 100 \text{ GeV}^2$

 less for higher energy electron beam 8/30/2018

Detection of scattered (intact) proton

• Beam line dipoles and quadrupoles included in GEANT

Calorimeter coverage $-4 < \eta < 4$

-4 < η < -1.55	PbWO ₄	2 cm x 2 cm	$\frac{2.5\%}{\sqrt{E}}\oplus 1\%$
-1.55 < η < 1.24	W-SciFi	0.025 x 0.025	$rac{16\%}{\sqrt{E}}\oplus 5\%$
1.24 < η < 3.3	PbScint	5.5 cm x 5.5 cm	${8\%\over \sqrt{E}}\oplus 2\%$
3.3 < η < 4	PbWO ₄	2.2 cm x 2.2 cm	$\frac{12\%}{\sqrt{E}}$
-1.1 < η < 1.1	Fe Scint + Steel Scint	0.1 x 0.1	$\frac{81\%}{\sqrt{E}}\oplus 12\%$
-1.24 < η < 5	Fe Scint	10 cm x 10 cm	$\frac{70\%}{\sqrt{E}}$

Cold QCD with sPHENIX barrel

Charge from ALD, delivered 10/2017 jet ALL ¥ 0.1 ALL sPHENIX proj. 0.06 s=200 GeV p+p → jet+X √s=200 GeV ml<1.1 PHENIX-note sPH-cQCD-2017-002 ml<1.1 L=700 pb⁻¹ P=0.6 L=700 pb⁻¹ P=0.6 Theory curve: DSSV14 Medium-Energy Nuclear Physics Measurements with 0.04 Theory curve: DSSV14 the sPHENIX Barrel 0.05 0.02 10 20 30 40 10 p₊ (GeV/c) sPHENIX G4 simulation Pythia 8, 35 GeV y+jet event × **sPHENIX** Simulation s=200 GeV The sPHENIX Collaboration 0.8 October 10, 2017 p+p→jet+jet+X 0.7 0.6

Projected capabilities for observables in longitudinally, transversely polarized collisions, nPDFs

0

0.2

0.1

ISMD 2018

0.3 0.4 0.5 0.6 0.7 0.8

 $x_F = p_z/p_{beam}$

SPHENIX

8/30/2018

(Pythia simulation).

Soft-drop grooming combined with a Cambridge-Aachen type decomposition of a jet found with an anti- k_T algorithm – provides detailed information about the first parton splitting!

An excellent way to study cold QCD effects in fragmentation in detail!