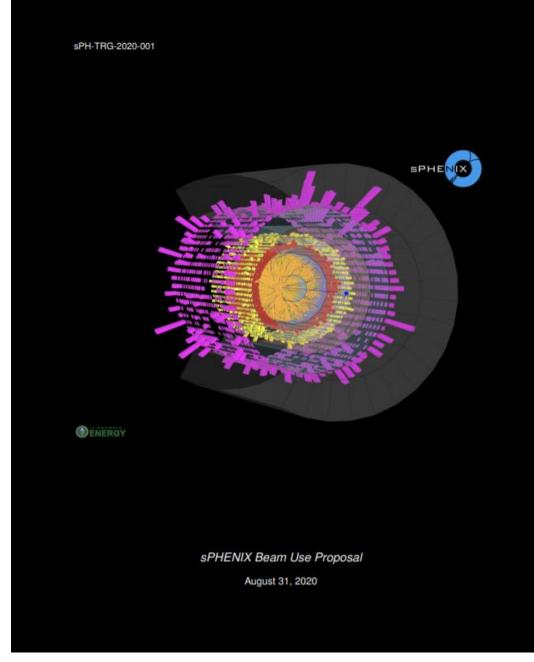
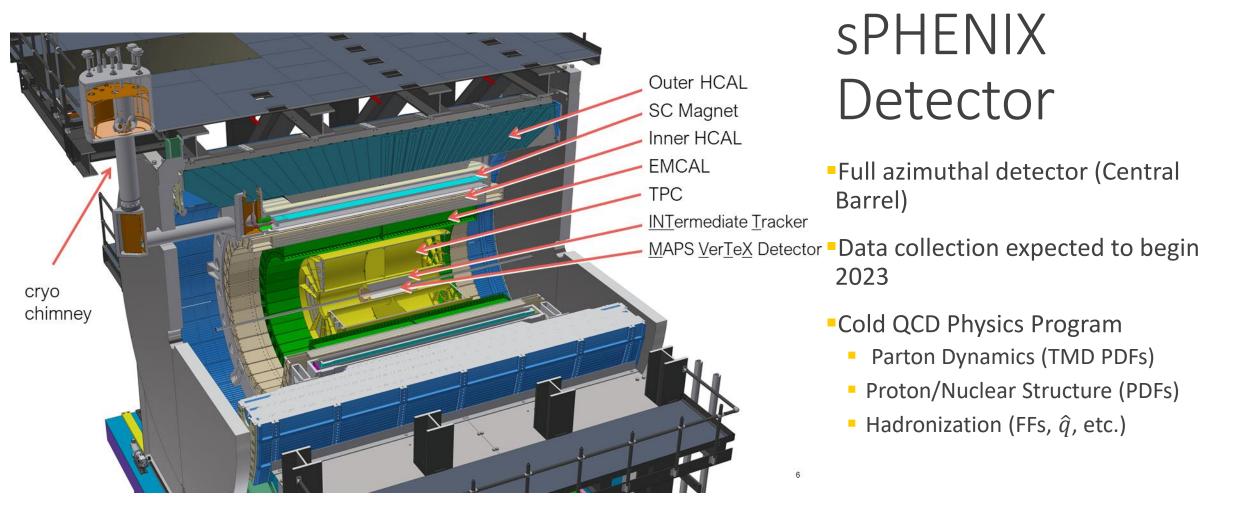


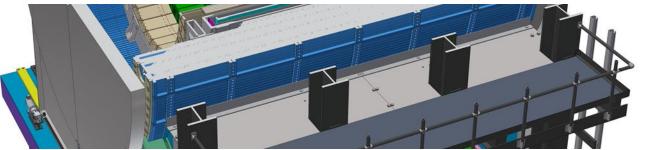
The future Cold QCD program with the sPHENIX detector

Desmond Shangase (University of Michigan) on behalf of the sPHENIX Collaboration RHIC/AGS Annual Users Meeting - October 22nd 2020




Contents

sPHENIX DetectorDesign + Run


Cold QCD Measurements

- Transverse Spin Measurements
- Unpolarized
 Measurements

SPH.	TRG-202	20-001	T					Outer HCAL gnet
	Year	Species	$\sqrt{s_{NN}}$	Cryo	Physics	Rec. Lum.	Samp. Lum.	ICAL
		opene	[GeV]	Weeks	Weeks	z < 10 cm	z < 10 cm	ICAL
	2023	Au+Au	200	24 (28)	9 (13)	$3.7~(5.7)~{ m nb}^{-1}$	4.5 (6.9) nb ⁻¹	
	2024	$p^{\uparrow}p^{\uparrow}$	200	24 (28)	12 (16)	0.3 (0.4) pb ⁻¹ [5 kHz]	45 (62) pb ⁻¹	ediate]
						4.5 (6.2) pb ⁻¹ [10%-str]		<u>/erTeX</u>
	2024	p^{\uparrow} +Au	200	-	5	0.003 pb ⁻¹ [5 kHz]	$0.11 \ { m pb}^{-1}$	
cryo						0.01 pb ⁻¹ [10%-str]		
chimney	2025	Au+Au	200	24 (28)	20.5 (24.5)	13 (15) nb ⁻¹	21 (25) nb ⁻¹	
		F	nr				1-1	

sPHENIX Detector

Full azimuthal detector (Central Barrel)

ediate Tracker

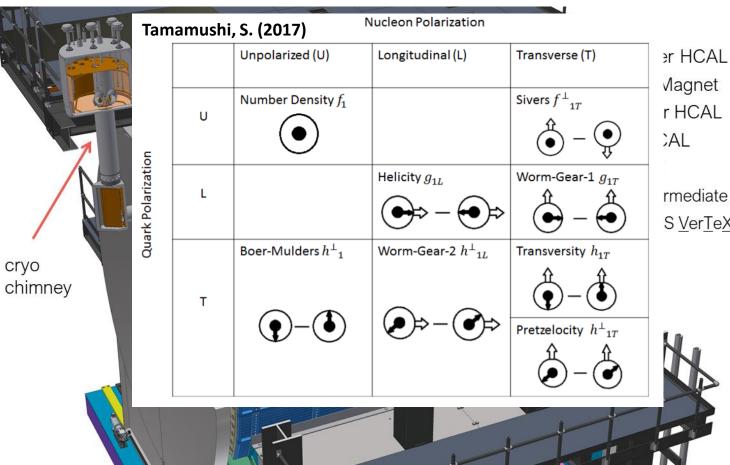
6

/erTeX Detector Data collection expected to begin 2023

- Cold QCD Physics Program
 - Parton Dynamics (TMD PDFs)
 - Proton/Nuclear Structure (PDFs)
 - Hadronization (FFs, \hat{q} , etc.)

sPH-T	TRG-202	RG-2020-001								
	Year	Species	$\sqrt{s_{NN}}$	Cryo	Physics	Rec. Lum.	Samp. Lum.	gnet ICAL		
			[GeV]	Weeks	Weeks	z < 10 cm	z <10 cm	Ľ		
	2023	Au+Au	200	24 (28)	9 (13)	$3.7 (5.7) \text{ nb}^{-1}$	4.5 (6.9) nb ⁻¹			
	2024	$p^{\uparrow}p^{\uparrow}$	200	24 (28)	12 (16)	0.3 (0.4) pb ⁻¹ [5 kHz] 4.5 (6.2) pb ⁻¹ [10%- <i>str</i>]	45 (62) pb ⁻¹	ediate <u>/</u> er <u>T</u> e>		
cryo	2024	p [↑] +Au	200	-	5	0.003 pb ⁻¹ [5 kHz] 0.01 pb ⁻¹ [10%-str]	$0.11 \ { m pb}^{-1}$	<u>_or_or</u>		
chimney	2025	Au+Au	200		20.5 (24.5)	13 (15) nb ⁻¹	21 (25) nb ⁻¹			
Last	polari	zed h	adro	n co	llision	data to come	e out of	RHIC		

sPHENIX Detector


 Full azimuthal detector (Central Barrel)

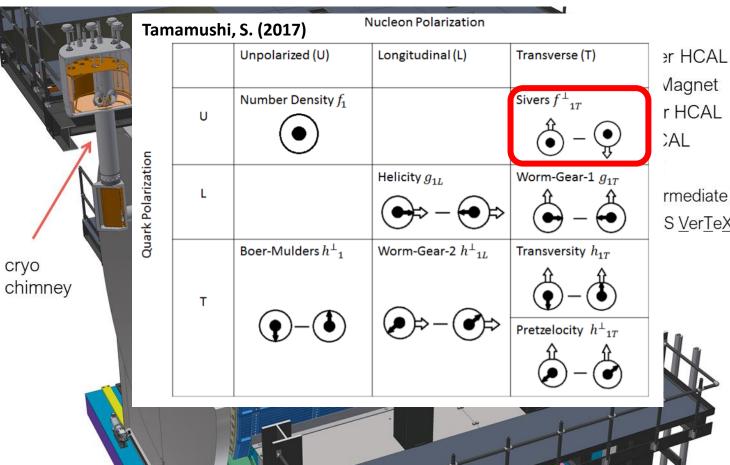
ediate <u>T</u>racker

6

/erTeX Detector Data collection expected to begin 2023

- Cold QCD Physics Program
 - Parton Dynamics (TMD PDFs)
 - Proton/Nuclear Structure (PDFs)
 - Hadronization (FFs, \hat{q} , etc.)

sPHENIX Detector


Full azimuthal detector (Central Barrel)

rmediate Tracker

6

S VerTeX Detector Data collection expected to begin 2023

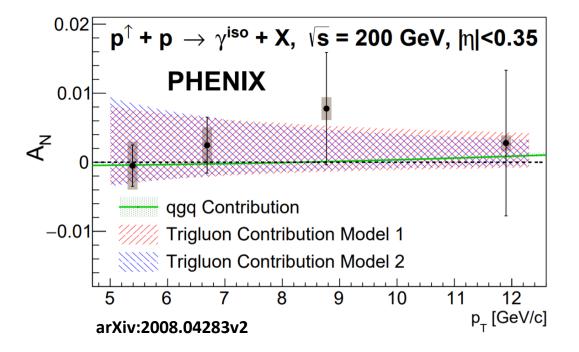
- Cold QCD Physics Program
 - Parton Dynamics (TMD PDFs)
 - Proton/Nuclear Structure (PDFs)
 - Hadronization (FFs, \hat{q} , etc.)

SPHENIX Detector

Full azimuthal detector (Central Barrel)

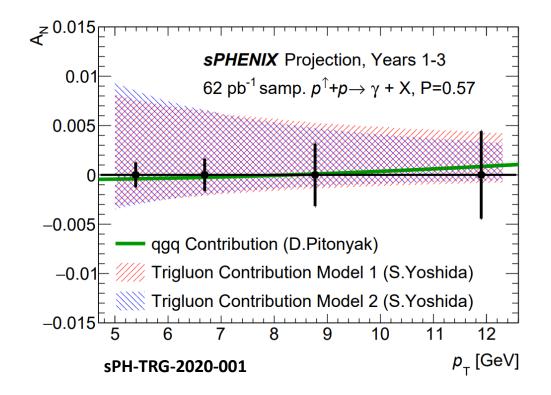
rmediate Tracker

6


S VerTeX Detector Data collection expected to begin 2023

- Cold QCD Physics Program
 - Parton Dynamics (TMD PDFs)
 - Proton/Nuclear Structure (PDFs)
 - Hadronization (FFs, \hat{q} , etc.)

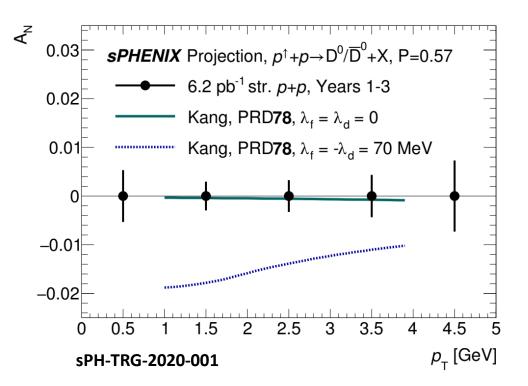
Transverse Spin Measurements in $p^{\uparrow}+p^{(\uparrow)}$ and $p^{\uparrow}+Au$


Direct Photon Asymmetry

- •Will be used to constrain twist-3 framework w.r.t. gluon distributions
 - Coupled to f_{1T}^{\perp} of gluons in the proton

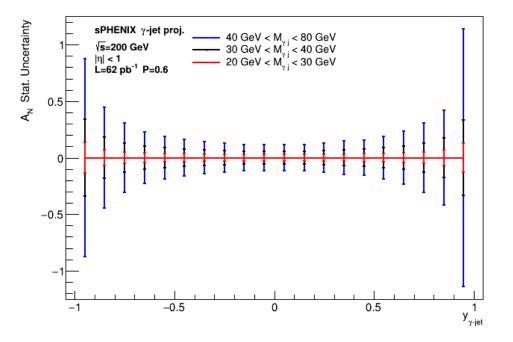
Direct Photon Asymmetry

- Will be used to constrain twist-3 framework w.r.t. gluon distributions
 - Coupled to f_{1T}^{\perp} of gluons in the proton



Heavy Flavor Asymmetry

- •Will be used to constrain twist-3 framework w.r.t. gluon distributions
 - Coupled to f_{1T}^{\perp} of gluons in the proton


 ${}^{\bullet}A_N(\phi_q) = \frac{1}{P} \frac{Y^{\uparrow} - R \cdot Y^{\downarrow}}{Y^{\uparrow} + R \cdot Y^{\downarrow}} = \frac{1}{P} \frac{L(\sigma^{\uparrow}(\phi_q) - R \cdot \sigma^{\downarrow}(\phi_q))}{L(\sigma^{\uparrow}(\phi_q) + R \cdot \sigma^{\downarrow}(\phi_q))}$

- Possible due to sPHENIX streaming DAQ
 - 10% of collisions will be recorded in this triggerless configuration

Gamma-jet Asymmetry

- Gluon-induced Compton scattering
 - Constrain gluon spin distribution in polarized proton
 - sPHENIX is designed to be a jet detector to the relevance of this and similar channels to heavy-ion physics

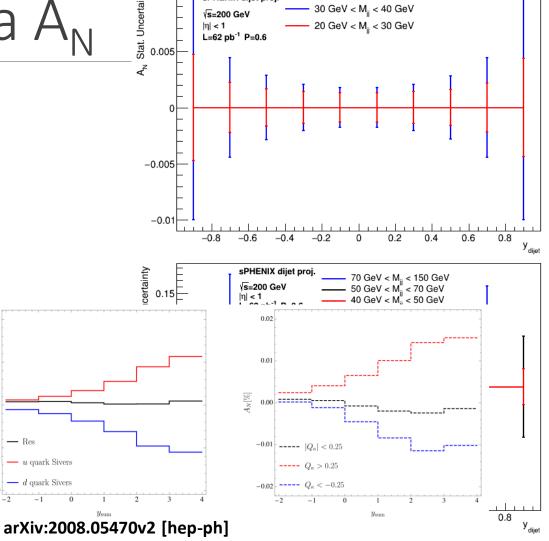
0.10

0.05

-0.05

-2

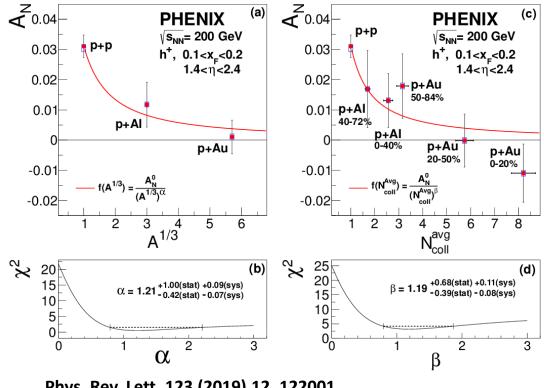
 $A_N[\%]$


14

Stat. Uncertainty 500'0 sPHENIX dijet proj Parton Dynamics via A_N |ŋ| < 1 ď Gamma-jet Asymmetry Gluon-induced Compton scattering Constrain gluon spin distribution in polarized proton -0.005

SPHENIX is designed to be a jet detector to the relevance of this and similar channels to heavy-ion physics

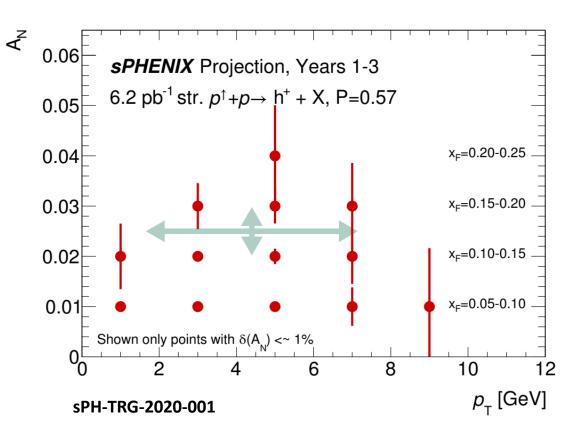
Dijet Asymmetry


Charge-tagging can allow for flavor-dependent Sivers asymmetry measurement

Nuclear Effects in A_N

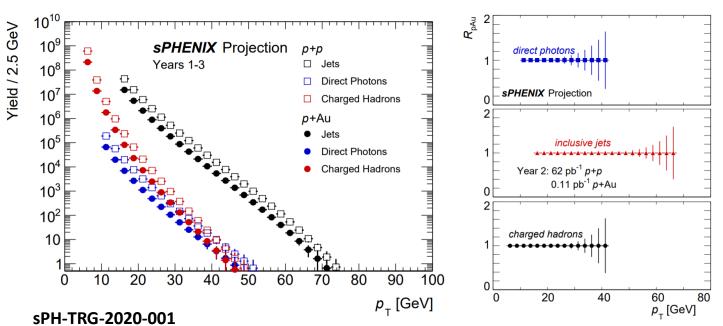
Charged hadron Asymmetry

- Noticeable decrease in A_N amplitude in differing collision systems
 - At forward pseudorapidity and intermediate x_F
 - Currently no consensus on this behavior



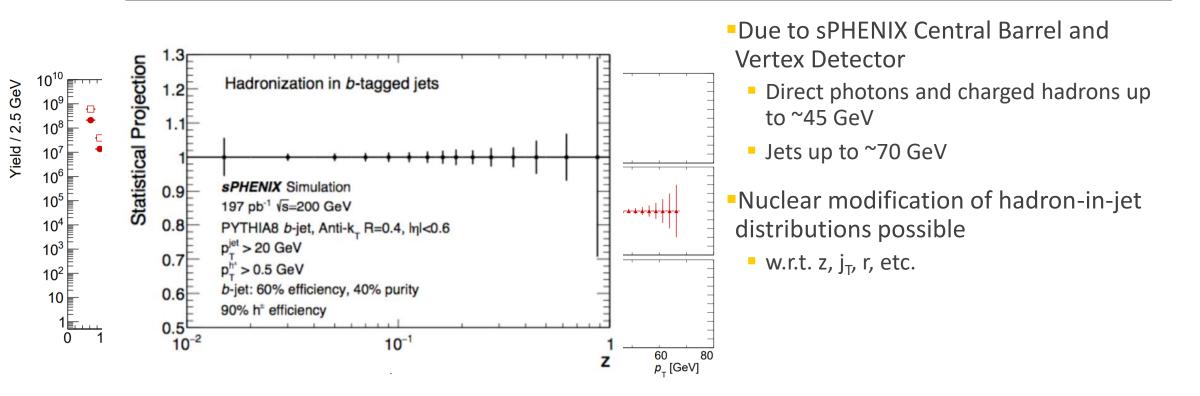
Phys. Rev. Lett. 123 (2019) 12, 122001

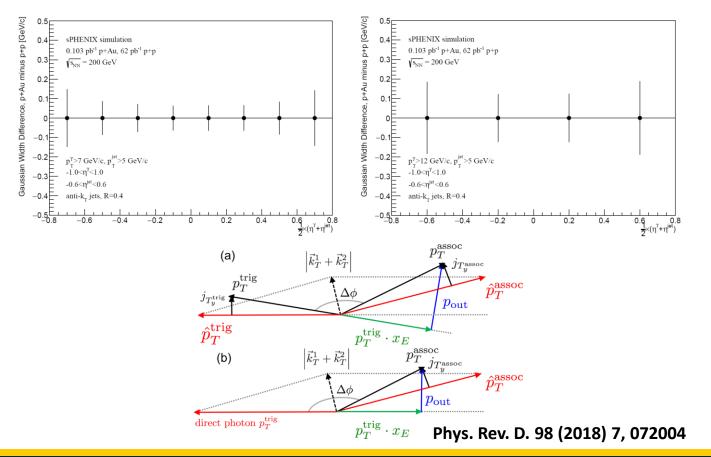
Nuclear Effects in A_N


Charged hadron Asymmetry

- Noticeable decrease in A_N amplitude in differing collision systems
 - At forward pseudorapidity and intermediate x_F
 - Currently no consensus on this behavior
- SPHENIX to improve statistics in this region of x_F
 - Specifically for $p^+ p^+$ and $p^+ Au$ data points
 - Finer binning is expected

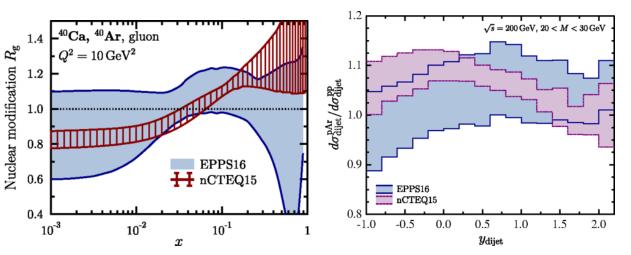
Unpolarized Measurements in p+p and p+Au


Nuclear Effects in Hadronization


- Due to sPHENIX Central Barrel and Vertex Detector
 - Direct photons and charged hadrons up to ~45 GeV
 - Jets up to ~70 GeV

 Nuclear modification of hadron-in-jet distributions possible

Nuclear Effects in Hadronization



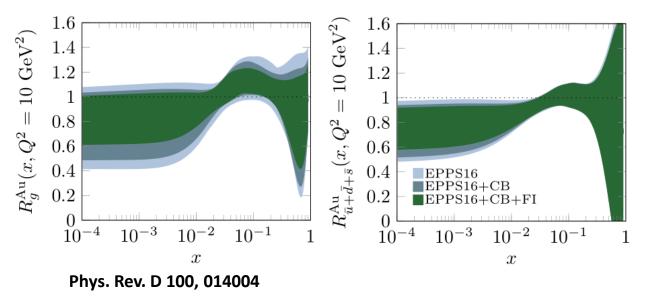
Nuclear Effects in Hadronization

- Due to sPHENIX Central Barrel and Vertex Detector
 - Direct photons and charged hadrons up to ~45 GeV
 - Jets up to ~70 GeV
- Nuclear modification of hadron-in-jet distributions possible
 - w.r.t. z, j_T, r, etc.
- Similarly, can measure transport coefficient for gamma-jet systems
- $\langle \hat{q}L \rangle / 2 \cong \langle p_{out}^2 \rangle_{pA} \langle p_{out}^2 \rangle_{pp}$

Constraining nPDFs

Phys. Rev. D 100, 014004

Tension exists between nPDF models



- Tension exists between nPDF models
- Measurement of nuclear modifications can be used to constrain existing nPDFs
- Channels expected for simultaneous analysis
 - Drell-Yan
 - Dijet
 - Photon-jet

Phys. Rev. D 100, 014004

Constraining nPDFs

- Tension exists between nPDF models
- Measurement of nuclear modifications can be used to constrain existing nPDFs
- Channels expected for simultaneous analysis
 - Drell-Yan
 - Dijet
 - Photon-jet

Expecting improved uncertainties in gluon and antiquark nPDFs with this method

Particularly in shadowing region

Further Prospectives

Sivers via inclusive jet A_N

- Yet to be measured at central rapidity
- Uncertainty expected on the order of 10⁻⁴
- Complementary study to be done at EIC
- Collins Fragmentation Function
 - H_1^{\perp} = distribution of in-jet hadron transverse momentum produced by a polarized quark
 - Provides us much needed access to transversity in protons
 - h_1 = parton transverse spin polarization in a transversely polarized proton
- Interference Fragmentation Function
 - Coupling between transversity and dihadron hadronization
 - Measured via dihedron angular distributions

Summary

- Parton dynamics and cold nuclear effects can be measured/constrained with the sPHENIX detector
- Transverse spin dependent observables grant us access to
 - Gluon dynamics via photon, photon-jet (new), heavy flavor, and dijet asymmetries
 - Quark dynamics via charge-tagging in dijet channel
 - A_N nuclear and pseudorapidity dependencies via inclusive hadron measurements
- Viable spin-independent measurements at sPHENIX will contribute to understanding of transport coefficients as well as the nuclear modification of
 - Direct photons, charged hadrons (new), and inclusive jet production
 - Heavy flavor distributions in jets
 - Gluon and antiquark PDFs via Drell-Yan, dijet, and photon-jet channels