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Overview

•What do we mean by Absolute Luminosity? (5%)

•Why do we need to measure it? (5%)

• How do we measure it? (90%)

•What exactly is a Vernier Scan?

• Description of the hardware involved (DCCTs, WCMs, BPMs)

• Sample Data
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What do we mean by Absolute Luminosity?

• Luminosity is proportionality between event rate Ṅ of process with cross section σ :

Ṅ = Lσ

• Typically given in cm−2s−1

• Ny target particles uniformly distributed over area A of zero thickness

• Probability of single beam particle colliding head-on is Ny × σ/A

• If Nb beam particles, total number of collisions N = Nb ×Ny × σ/A

⇒ For kb bunch pairs intersecting at frequency frev, total event rate :

Ṅ =

[
kb × frev ×

Nb ×Ny

A

]
× σ

⇒L = kb × frev ×
Nb ×Ny

A
For zero-length bunches with non-uniform charge distributions :

dL = kb × frev ×
ρb(x, y)dxdy × ρy(x, y)dxdy

dxdy

⇒L = kb × frev ×
∫ ∞

−∞

∫ ∞

−∞
ρb(x, y)ρy(x, y)dxdy
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What do we mean by Absolute Luminosity?

For Gaussian beams with Nb and Ny particles colliding head-on :

L = kb × frev ×
∫ ∞

−∞

∫ ∞

−∞
ρb(x, y)ρy(x, y)dxdy

⇒ kb × frev ×
Nb ×Ny

2π
√

(σ2
bx + σ2

yx)(σ
2
by + σ2

yy)

• Luminosity probably 2nd most important machine parameter, after beam energy

Why do we need to measure Absolute Luminosity?

Many PHENIX papers discuss the measurement of an invariant cross-section :

E
d3σ

dp3
≈ N

L
1

2πpT

1

∆pT∆y

1

ηtrig

1

ηrecon

•We usually need L to extract cross-sections

• Knowing σ and L useful for calibrating detector efficiencies, geometric acceptances, ...

• Required to calibrate detectors (BBC, ZDC) which can then be used as luminosity
monitors Ṅmonitor = L σmonitor ⇒ L = Ṅmonitor/σmonitor

• Important feedback for CAD for tuning beam, evaluating performance
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How do we measure Absolute Luminosity?

L ≈ kb × frev ×
kb∑

i=1

N i
b ×N i

y

2π
√

(σi 2
bx + σi 2

yx)(σ
i 2
by + σi 2

yy)

• To measure the number of ions Nb and Ny in each colliding bunch pair we use :

• DCCT = D.C. current transformer

•WCM = Wall Current Monitor

• kb ≈ 60, frev ≈ 78.2 kHz

• Beam overlap integral (effective width and height) determined with vernier scan

• Requires knowledge of event rates (BBC, ZDC) versus beam displacement

• Beam displacement measured with Beam Position Monitors (BPMs)
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Beam Ion measurement with the DCCTs

• D.C. current transformer designed in 1969 by Klaus Unser for the ISR

• One DCCT for blue and one for yellow at 2 o’clock

• Consists of high permeability toroid around beam with three windings

• One set of coils drives toroid into positive then negative saturation

• Sense windings detect flux changes, produce symmetric positive and negative voltage

• If beam current 6= 0, acts like shift in H, coil driven to different parts of B −H curve
- positive and negative swings no longer balanced

• Second harmonic of sense signal is fedback to third winding to cancel flux from beam

• Voltage across precision resistor in series with third winding is proportional to beam
current

•Measures average current over integration period of ≈ 1 second (hence DC) with ≈
0.2% absolute accuracy, 50 µA rms resolution, ± 0.01% linearity error

• Long integration period means insensitive to bunched/unbunched beam, can’t measure
charge in individual bunches

• Calibrated with precision current source at startup

• Demagnetized after each beam dump to minimize “memory” effects
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Beam Ion measurement with the DCCTs

• Insulating ceramic break in beam-
pipe shunts wall currents around
toroid

•Magnetic shielding excludes ex-
ternal magnetic fields

• Only beam current threads core
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Beam Ion measurement with the DCCTs
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Beam Ion measurement with the DCCTs
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Beam Ion measurement with the WCMs

• Insulating ceramic break in beam-
pipe forces image wall currents
through resistors

• ωlow ≈ R/L

• ωhigh ≈ 1/RC, few GHz

• Sensitive only to bunched beam

• Less accurate then DCCT

• Calibrate WCM with DCCT each
fill after ramp when no un-
bunched beam

• Can measure bunch longitudinal
profiles
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Beam Ion measurement with the WCMs

•Wall current monitor samples profile
in 0.25 nsec bins

•Wide bunches seem to correspond to
wide vertex

• 1st pair : 47 cm; 2nd pair : 51 cm

• Still to do : predict vertex dist. from
WCM

• Alternating between bunches →
0.125 nsec bins → improved vertex
reconstruction
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Calibration of the WCMs with the DCCTs after Ramp
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WCMs exhibit more noise than DCCTs
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What is a Vernier Scan?

Recall L of identical zero-length bunch pairs with non-uniform charge distributions :

dL = kb × frev ×
ρb(x, y)dxdy × ρy(x, y)dxdy

dxdy

Let Nb =
∫∞
∞

∫∞
−∞ ρb(x, y)dxdy be number of ions in blue bunch :

L = kb × frev ×Nb ×Ny ×
∫ ∫

ρb(x, y) × ρy(x, y)dxdy∫ ∫
ρb(x, y)dxdy

∫ ∫
ρy(x, y)dxdy

⇒ kb × frev ×Nb ×Ny ×
∫

ρb(x) × ρy(x)dx∫
ρb(x)dx

∫
ρy(x)dx

(ribbon− like beams)

• Simon van der Meer showed how to measure the overlap integral in 1968 at ISR

• Detailed knowledge of each beam’s transverse profile is not required
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What is a Vernier Scan?

• Consider event rate when beams displaced by h from each other :

Count Rate(h) = η
∫

ρb(x)ρy(x− h)dx so area under counting rate curve :

Area = η ×
∫ ∫

ρb(x)ρy(x− h)dzdh

= η ×
∫

ρb(x)

[∫
ρy(x− h)dh

]
dx but

[∫
ρy(x− h)dh

]
=

∫
ρy(x)dx

= η ×
∫

ρb(x)dx

∫
ρy(x)dx

•Maximum count rate at h=0 ⇒ Ṅmax = η ×
∫

ρb(x)ρy(x)dx

⇒
∫

ρb(x)ρy(x)dx∫
ρb(x)dx

∫
ρy(x)dx

=
Ṅmax

Area
!!!
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How do we do a Vernier Scan?

•Measure count rate, step beam by putting known bump in orbit, measure rate again, ...

• Rates measured with ZDC and BBC - multiple collisions not a significant problem yet

• Beam displacement known from models of beam transport through accelerator

• Displacements measured with Beam Profile Monitors (BPMs) at ± 8 meters from IP
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How do the BPMs work?

• Beam Current induces voltage(t) ∝ derivative of Ib(t)

• BPM electronics find peak of first of two double humps

•Magnitude of voltage is sensitive to total charge and position w.r.t. stripline

• X Position ≈ X2-X1 / X2+X1

•Many possible offsets : electrical center 6= mechanical center 6= orbit center ...
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Some Examples of Poor Photography

•More than 700 BPMs in RHIC and AGS

•Must make electrical connection from 4K to room temperature
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Calibration of BPM electronics
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BPM wire scanning calibration apparatus
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BPM wire scanning calibration apparatus closeup
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Vernier Scan 174762 showing BPMs of Yellow beam
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Vernier Scan 174762 showing BPMs of Blue beam : Small coupling
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BPMs suggest beam is oscillating in horizontal
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Event Rates during Vernier Scan recorded in GL1P Scalers

• Put BBCLL1, Clock, ZDCWide, ZDCNS in GL1P scalers (live counts)

• Bin and plot BBCLL1/Clock, ZDCWide/Clock, and ZDCNS/Clock

• Find steps in rates corresponding to beam motions

• Plot Event Rate versus Beam displacement

• Find plot area, peak, combine with calibrated WCM data, insert into expression for L
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Sample Data (Thanks to Robert Bennett, Oleg Eyser)
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Sample Data (Thanks to Robert Bennett, Oleg Eyser)
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Many Sources of Uncertainty (see AN184)

• Beams never overlap maximally - never measure Ṅmax

• Determination of Area requires beam profile assumptions or many measurement points

• Emittance blow-up during vernier scan, coupling of beam motions

• Non-zero crossing angle, Beam position and charge uncertainties

•Multiple collision effects, afterpulsing, backgrounds

• Rotated beam axis (should measure a few stripes)

• Factors affecting calibration of BBC as L monitor : smearing effects, vertex position
dependent efficiencies, “hourglass effect”, ...
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Accounting for Crossing Angle and Hourglass Effect (see Keil)

L ∝
∫

ρb(x, y, s)ρy(x, y, s) dxdyds

ρb ∝
Nb

2πσ0(1 + s2/β2
0)

exp

(
− x2 + y2

2σ2
0(1 + s2/β2

0)

)
,

ρy ∝
Ny

2πσ0(1 + s′2/β2
0)

exp

(
− x′2 + y′2

2σ2
0(1 + s′2/β2

0)

)

• x′, y′ related to x, y by crossing angle

• Focusing account for by
√

1 + s2/β2
0

σ0 ≈

√
εβ0

6πγ
≈

√
20π × 10−6 × 1

6π100
≈ 200 µm

• Crossing angle effect has been measured (angle scan)

• Focussing effect leads to ZDCWide beam width appearing wider than ZDCNarrow (see
John Lajoie’s plots)
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Preliminary Results from Angle Scan (From Angelika)
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Thanks for your attention
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