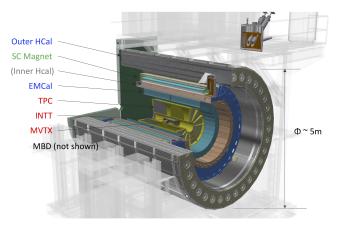
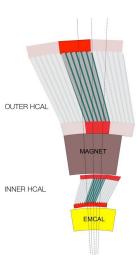
Validation of Production SiPMs for the sPHENIX Experiment


N. Grau

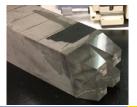
Augustana University for the sPHENIX Collaboration

October 17, 2019

sPHENIX Experiment



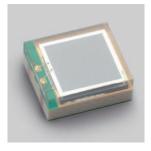
- A new detector at RHIC
- Microscopic properties of the QGP from
 - ► jets
 - direct photons
 - heavy flavors



Introduction

Electromagnetic and Hadronic Calorimeter

- Electromagnetic Calorimeter: Scintillating fibers embedded in W powder
 - $\Delta\eta \times \Delta\phi = 0.024 \times 0.024$
 - $\sigma_E/E = 16\%/\sqrt{E} \oplus 5\%$
- Hadronic Calorimeter: Plastic scintillating tiles
 + tilted Steel/Al plates
 - $\Delta \eta \times \Delta \phi = 0.1 \times 0.1$
 - $\sigma_E/E = 100\%/\sqrt{E}$
- Common readout via SiPMs (e.g. 4 per EMCal Tower)


Grau (sPHENIX)

SiPM Testing

SiPM

Hamamatsu S12572-015P SiPMs

Photosensitive Area	3x3 mm ²
Pixel pitch	$15~\mu{ m m}$
# of pixels	40000
peak wavelength sensitivity	460 nm
photon detection efficiency	25%
Gain	2.3×10 ⁵
Operating voltage	$\approx V_{br}$ + 4 V
Voltage-Temperature Slope	56 mV/°C

- Immune to magnetic fields
- Susceptible to radiation damage

Shipment Schedule

- ► 8000 devices shipped monthly to University of Michigan for testing
- ► Trays of full 12x13 or partial trays in 40 mV bins of operating voltage

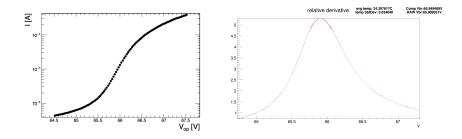
Test Stand

- Developed by University of Debrecen
- Perform both I-V and Single Pixel Spectrum (SPS) tests^{SPHE}VIX
- ▶ Perform 1 full tray test per day

Grau (sPHENIX)

SiPM Testing

Test Stand

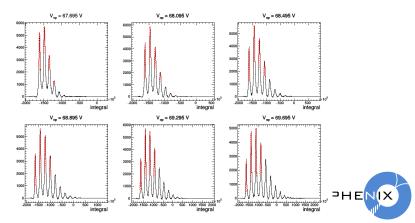


- Motorized arm with micron precision and vacuum nozzle moves SiPMs from tray to test position
- Electrical connections by weight and pressure
- National Instruments crate for high voltage and data acquisition
- ► 50 temperature sensors with 0.1°C precision
- ▶ Rough I-V scan to estimate V_{br}.
- ► LED pulses at 6 different V_{op} for SPS

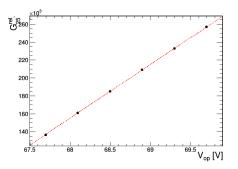
SPHE

Results

I-V Scan



- Example I-V scan for single SiPM
- Measure current draw for low intensity DC LED light
- $d(\ln(I))/dV$ maximum at V_{br}
- \blacktriangleright Use measured temperature to correct to 25° C


Single Pixel Spectrum

- ▶ 100,000 LED pulses at 6 different V_{op}
- GHz digitizer produces output signal that is integrated and histogrammed

Single Pixel Spectrum

- Relative gain is determined by the peak-to-peak differences in SPS
- ► Linear relationship between relative gain and V_{op}.
- Uncertainties are smaller than the points.

