EMCal Divider Study

Joe Osborn UMich 11/15/17

Overview

- Reminder: Last few weeks Jin submitted pull requests which allows us to adjust divider width and material in simulation
- Performed single particle simulations with various divider materials
- Simulation setup:
 - Electrons or positrons at 5 GeV, photons at 20 GeV in $p_{\rm T}$
 - 0.4<n<0.5
 - 0.2<φ<0.4 (1 sector)

Example DSTReader Plots Showing Divider Hits

Example Energy Response

- Example energy response for 5 GeV electrons (top) or 20 GeV photons (bottom) in G4AIR
 - Photons suffer a bit from statistics
- This is without the position dependent energy recalibration
- Fit each slice with a Gaussian and plot the mean energy responses as a function of particle and divider material (G4AIR, FR4, SS310, G4W)

Energy Responses as a Function of Material Electron Positron

 There is some indication of a material dependence in between blocks, but it appears to be small

Photon Response

- Even with limited statistics can see some material dependence at block boundaries
- Statistics are lacking though
 - Running more simulations but I believe that the electron/positron responses tell us what we would like to know

Conclusions

- There is a slight response difference between the 4 materials
 - Looks to be an 8% effect at worse from G4AIR-G4W, 3-4% effect at best
 - Difference between G4AIR and SS310 is at most 3%. Difference between SS310 and FR4 is at most 2%
 - Note also that the position dependent correction makes this difference smaller (see backups)
- I am running more statistics for the photons, but based on the electrons/positrons the effect appears to be a few percent

divider per event [GeV]			
G4AIR	G4W	SS310	FR4
150 * 0 * * 151 * 3.555e-06 * 152 * 3.497e-05 * 153 * 2.453e-06 * * 154 * 2.955e-06 * * 155 * 3.763e-06 * * 157 * 7.596e-07 * * 158 * 9.346e-08 * * 159 * 4.315e-06 * * 160 * 1.395e-05 * * 161 * 7.346e-07 * * 162 * 1.380e-06 * * 163 * 2.131e-05 * * 164 * 2.610e-06 * * 165 * 7.224e-07 * * 166 * 4.837e-08 * * 167 * 1.454e-05 * * 168 * 2.716e-06 * * 169 * 1.931e-05 * * 169 * 1.931e-05 * * 170 * 3.390e-05 * * 171 * 8.596e-07 * * 172 * 1.401e-07 * * 173 * 8.666e-07 * * 174 * 1.030e-07 *	 125 * 0.0292929 * 126 * 0.0197231 * 127 * 0.0018729 * 128 * 0.0119231 * 129 * 0.0091332 * 130 * 0.0155842 * 131 * 0.0442088 * 132 * 0.0130847 * 133 * 0.0028971 * 134 * 0.0008931 * 135 * 0.1326771 * 136 * 0.0824766 * 137 * 0.0202192 * 138 * 0.0019179 * 139 * 0.0171066 * 140 * 0.4943101 * 141 * 0.0048306 * 142 * 0.1614126 * 143 * 0.0982819 * 144 * 0.0028162 * 145 * 0.0498763 * 147 * 0.0436497 * 148 * 0.0482307 * 149 * 0.0059679 * 	 * 125 * 0.0010117 * * 126 * 0.0032261 * * 127 * 0.0001611 * * 128 * 0.0012504 * * 129 * 0.0128772 * * 130 * 0.0033219 * * 131 * 0.0037478 * * 132 * 0.0041433 * * 133 * 0.0007457 * * 134 * 0.0049096 * * 135 * 0.0041540 * * 136 * 0.0093805 * * 137 * 0.1239463 * * 138 * 0.0023412 * * 139 * 0.0095213 * * 140 * 0.0031895 * * 141 * 0.0005670 * * 142 * 0.0415706 * * 143 * 0.005033 * * 145 * 0.0561623 * * 146 * 0.0003318 * * 147 * 0.0052560 * * 149 * 0.0050752 * 	 * 125 * 0.0007321 * * 127 * 0.0006566 * * 128 * 0.0011789 * * 129 * 0.0019222 * * 130 * 0.0020956 * * 131 * 0.0248396 * * 132 * 0.0023547 * * 133 * 0.0362140 * * 134 * 0.0004648 * * 135 * 0.0418466 * * 136 * 0.0011482 * * 136 * 0.0011482 * * 137 * 0.0312298 * * 138 * 0.0259616 * * 139 * 0.0006351 * * 140 * 0.0005105 * * 141 * 0.0002837 * * 142 * 0.0013796 * * 143 * 7.863e-05 * * 144 * 0.0004807 * * 145 * 0.0002420 * * 146 * 0.0119910 * * 147 * 0.0382477 * * 149 * 0 *

Example energy deposition in the divider per event [GeV]