sPHENIX Tuesday EMCAL Meeting

EMCAL Uniformity Studies Summary for Position Scans in 2017 and 2018 Test Beam Runs

Zhaozhong Shi

Massachusetts Institute of Technology

08/21/2018

Analysis Status

- Analysis notes (33 pages) with all position scan data (all test beam runs in2017 and 2018 test beams) have been analyzed and compiled
- Analysis codes are available on github: https:// github.com/MYOMAO/ SPHENIX/tree/master/ FullyAuto

SPHE

T1044-2017 and 2018 sPHENIX Test Beam EMCal Position Scan Analysis

Zhaozhong Shi¹ and Jin Huang²

¹MIT ²Brookhaven National Laboratory

August 16, 2018

Abstract

sPHENIX Collaboration conducted test beam experiment at Fermilab Test Beam Facilities in 2017 and 2018 to study the performance of the sPHENIX calorimeter systems. The sPHENIX calorimeter system consists of electromagnetic calorimeter (EMCal) and inner and outer hadronic calorimeter (HCAL). We have conducted energy and position scan to study the uniformity, energy linearity, and energy resolution of the calorimeter systems. In this paper, we will present our detailed analysis on the 2017 and 2018 EMCal position scans to study its uniformity and discuss the possible methods to improve the EMCal uniformity.

Contents

1	Introduction 1.1 Motivation 1.2 2017 Test Beam Run 1.3 2018 Test Beam Run	6 6 6				
2	Software Documentation					
3	Data Acquisition, Production, and Calibration 3.1 Position Scan Data Acquisition					

Datasets Used

2017 test beam run ($\eta = 1$):

- Second position scan: 0° tilted 8 GeV electrons (recalib)
- Third position scan: 10° tilted 8 GeV electrons (recalib)

2018 test beam run (η = 1):

- Third position scan: sPHENIX position 5 GeV electrons (recalib)
- Four position scan: dual channeling 5 GeV electrons (recalib)
- Fifth position scan: dual channeling 8 GeV electrons (prod)
- Sixth position scan: sPHENIX+5 8 GeV electrons (prod)
- Seventh position scan: sPHENIX position 8 GeV electrons (prod)

Analysis Techniques

Basic Analysis:

- Step 1: hodoscope corrections
- Step 2: preliminary data assessment (position corrections: prdf vs root files disagreements, 2018 data only and statistics distributions)
- Step 3: mean energy extraction (mean and fits methods)
- Step 4: Interpolation (2017 data only due to non uniformity)

Further Analysis:

- 1 D Projections and comparisons
- Central 4 × 4 tower comparisons to study uniformity

Hodoscope Corrections

2017 2nd Position Scan

2018 7th Position Scan

All position scans have the same signs for hodoscope corrections (horizontal – and vertical +) except the 2018 7th position scan, which has horizontal + and vertical +.

Position Corrections

• Disagreement between prdf files and root files for x and y positions in the same run in 2018 test beam runs:

Run Number	prdf file x (mm)	prdf file y (mm)	root file x (mm)	root file y (mm)	
901	431.1	98.87	431.1	98.9	
902	450.9	98.87	431	98.89	
903	471.1	98.87	450.9	98.87	
904	491.2	98.86	471.1	98.87	
905	510.9	98.9	491.2	98.86	
906	531	98.9	510.9	98.9	
907	551	98.89	531	98.9	
908	570.9	98.92	551	98.89	
909		98.93	570.9	98.92	
910	0	119 🔶	0	109.9	

Table 4.1: Horizontal and vertical position prdf files and root files for 10 runs in the fourth position scan in the 2018 test beam run.

• Analysis code correct positions of the root file, which are incorrect, back to the positions of the prdf files positions, which are correct

Statistics Distributions

SPHEN

EMCAL Energy Spectra Statistics vs Position

Mean Energy Extraction

Analysis strategies:

1. Collect the position corrected TH3 histogram energy, x, y distribution from the "\.EMCalCalib.root" files with "good_e" (good electrons) selections.

2. Project the TH3 histogram to the 1 mm × 1 mm bins to obtain the energy spectra

3. Extract the mean from the distribution with mean and Gaussian fits method

Mean method: take the mean directly from the spectrum. Applicable when the statistics is low but the precision is not as good as the mean method

Fits method: perform a Gaussian fits with certain range near the electron beam energies. Applicable when we have sufficient statistics. It is better to represent the mean energy than the mean method.

Energy Spectra and Gaussian Fits

2017_Interpolation-Dual-Channel-Reversed_Fits_recalib Energy Distribution in x = 178 mm and y = 74 mm

2018_Interpolation-Dual-Channel-Reversed_Fits_recalib Energy Distribution in x = 405 mm and y = 256 mm

2018_Interpolation-sPHENIX-Rotation-Reversed_Fits_recalib Energy Distribution in x = 401 mm and y = 119 mm

1 mm × 1mm Mean Energy Distributions (Mean Method)

2018_Interpolation-sPHENIX-Rotation-Reversed_Mean_recalib

2017_Interpolation-sPHENIX-Rotation-Reversed_Mean_recalib

1 mm × 1mm Mean Energy Distributions (Fits Method)

2018_Interpolation-sPHENIX-Rotation-Reversed_Mean_recalib

2017_Interpolation-sPHENIX-Rotation-Reversed_Fits_recalib

Mean Energy vs Position Interpolation

Analysis strategies:

1. Input the 1 mm × 1 mm energy vs position distribution plots and loop through all positions

2. For zero-value bins, we search the nearby forward, backward, leftward, and rightward 2 mm bins. If we get non-zero values, we add them up and average them. The averaged value will become the energy of the zero-value bins.

3. After interpolating, we will be able to get the continuous mean energy vs position distribution

4. We add the tower boundaries to the plots determined from the hodoscope corrections plots

Since the position scan in the 2018 test beam is uniformly spaced, we can skip the interpolation steps and directly perform 5 mm × 5 mm projection to obtain the continuous mean energy vs position distribution plots.

From now on, I will only present the fits method.

2017 2nd Position Scan (10° Tilted)

Energy vs Horizontal and Vertical Positions After Interpolation - 10 Degree Tilted

2017 3rd Position Scan (0° Tilted)

2017 Data: Energy vs Horizontal and Vertical Positions After Interpolation - 0 Degree Tilted

2018 3rd Position Scan (Dual Channeling)

Third Position Scan (2018a, March 2018, Dual Channeling Rotation)

2018 4th Position Scan (sPHENIX Rotation)

Fourth Position Scan (2018a, March 2018, sPHENIX)

2018 5th Position Scan (Dual Channeling)

Fifth Position Scan (2018b, April 2018, Dual Channeling Rotation)

2018 6th Position Scan (sPHENIX + 5)

Vertical Axis (mm 09 09 09 07 00 07 00 8.5 Column 2 Column 3 Column 4 Column 5 Column 6 Column 7 8 Row 7.5 Row 5 7 100 Row 4 6.5 120 140 Row 3 6 160 Row 2 5.5 180 Row 1 5 200 220 는 4.5 400 380 360 Horizontal Axis (mm) 540 520 500 480 460 440 420

2018 7th Position Scan (sPHENIX Rotation)

Seventh Position Scan (2018b, April 2018, sPHENIX)

Qualitative Comparisons (0° Tilted vs Dual Channeling)

2017 Data: Energy vs Horizontal and Vertical Positions After Interpolation - 0 Degree Tilted Fifth Position Scan (2018b, April 2018, Dual Channeling Rotation)

Qualitatively, it appears that the 2017 0° has better uniformity than the 2018 dual channeling. We need to perform more quantitative studies to draw a conclusion.

Qualitative Comparisons (10° Tilted vs sPHENIX+5)

Energy vs Horizontal and Vertical Positions After Interpolation - 10 Degree Tilted

Sixth Position Scan (2018b, April 2018, sPHENIX+5)

Qualitatively, it appears that the 2017 10° has better uniformity than the 2018 sPHENIX + 5 horizontally and has worse uniformity vertically. We need to perform more quantitative studies to draw a conclusion.

8.5

8

7.5

6.5

6

5.5

5

Further Analysis: 1D Projection

Analysis strategies:

1. Input the mean energy vs position distribution plots

2. Normalized all the mean energy vs position plots by the average energies of the central 2 \times 2 towers

3. Perform 10 bins (10 mm) 1D projections on the tower boundary and central of the towers horizontally and vertically on the plots of the same scales

4. Compare the 1D distributions of the 2018 test beam results with the 2017 test beam results

From now on, we will only compare the results of the central towers since this is where the uniformity we really care about .

1D Projection Normalization Range

Energy vs Horizontal and Vertical Positions After Interpolation - 10 Degree Tilted

Third Position Scan (2018a, March 2018, Dual Channeling Rotation)

Fifth Position Scan (2018b, April 2018, Dual Channeling Rotation)

SPHENIX

Sixth Position Scan (2018b, April 2018, sPHENIX+5)

2017 Data: Energy vs Horizontal and Vertical Positions After Interpolation - 0 Degree Tilted

Fourth Position Scan (2018a, March 2018, sPHENIX)

Seventh Position Scan (2018b, April 2018, sPHENIX)

1D Horizontal Projection Comparison of 2017 0° tilted with 2018 Dual Channeling

1D Vertical Projection Comparison of 2017 0° tilted with 2018 Dual Channeling

1D Horizontal Projection Comparison of 2017 10° tilted with 2018 sPHENIX + 5

SPHENIX

1D Vertical Projection Comparison of 2017 0° tilted and 2018 Dual Channeling

SPHENIX

Further Analysis: Mean Energy Comparison for Central 4 × 4 towers

Analysis strategies:

1. Input the mean energy vs position distribution plots

2. Normalized all the mean energy vs position plots by the average energies of the central 4×4 towers

3. Fill the TH1 histogram with energy values within the 4 × 4 towers

4. Perform direct RMS and mean calculations and fit the distribution with single Gaussian function. Take the RMS/mean ratio for these two method

5. Rescale all plots to make their energy peaks locate right at 1, plot them together in the same plots, look at their widths, and compare their uniformity

RMS-Mean Analysis Projection Range

E vs XY Energy vs Horizontal and Vertical Positions After Interpolation - 10 Degree Tilted E vs XY 2017 Data: Energy vs Horizontal and Vertical Positions After Interpolation - 0 Degree Tilted 220 mu (240 E æ20 ~~00 ğ **평**80 <u>ڳ</u>60 160 140 E vs XY Fifth Position Scan (2018b, April 2018, Dual Channeling Rotation) E vs XY Third Position Scan (2018a, March 2018, Dual Channeling Rotation) 140 3.5 120 120 Position_(m 260 100 100 240 80 80 g 220 Verti 60¹ 60^L ¥200 180 200 220 240 260 280 300 180 200 220 240 260 280 300 320 340 20 Horizontal Position (mm) Horizontal Position (mm) 180 6.5 100 160 80 140 60 5.5 120 40 100 20 80 -----380 400 420 440 460 480 500 520 540 560 400 420 440 460 480 500 520 540 560 580 Horizontal Position (mm) Horizontal Position (mm) E vs XY Fourth Position Scan (2018a, March 2018, sPHENIX) E vs XY Sixth Position Scan (2018b, April 2018, sPHENIX+5) E vs XY Seventh Position Scan (2018b, April 2018, sPHENIX) <u>220</u> 5.5 8.5 (200 200 100 200

Mean Energy Distribution in the Central 4 × 4 Tower

Mean Energy Distribution for 2017 Data: Energy vs Horizontal and Vertical Positions After Interpolation - 0 Degree Titled

Country Country 300 250 200 150 100 50 -2 6 8 10 Mean Energy (GeV)

12

SPHENIX

Mean Energy Distribution for Fourth Position Scan (2018a, March 2018, sPHENIX)

Mean Energy Distribution for Seventh Position Scan (2018b, April 2018, sPHENIX)

Numerical Values of the Analysis

Scan	Description	Method	Mean Energy (GeV)	RMS Energy (GeV)	Ratio
2017 2nd	10° Tilted	Gaussian Fits	8.31391	0.309854	0.0372693
2017 2nd	10° Tilted	Direct Mean	8.06557	0.604261	0.0749186
2017 3rd	0° Tilted	Gaussian Fits	7.95036	0.446548	0.056167
2017 3rd	0° Tilted	Direct Mean	7.79044	0.648128	0.0831953
2018 3rd	Duel Channeling	Gaussian Fits	4.68995	0.383474	0.0817651
2018 3rd	Duel Channeling	Direct Mean	4.68438	0.396932	0.0847351
2018 4th	sPHENIX Rotation	Gaussian Fits	4.78303	0.30055	0.0628368
2018 4th	sPHENIX Rotation	Direct Mean	4.74758	0.332545	0.0700452
$2018 5\mathrm{th}$	Duel Channeling	Gaussian Fits	7.53188	0.622385	0.0826334
$2018 5\mathrm{th}$	Duel Channeling	Direct Mean	7.50998	0.614703	0.0818514
$2018 6 \mathrm{th}$	sPHENIX + 5	Gaussian Fits	7.5257	0.576267	0.0765731
2018 6th	sPHENIX + 5	Direct Mean	7.46732	0.559328	0.0749034
$2018 7\mathrm{th}$	sPHENIX	Gaussian Fits	7.71524	0.407703	0.0528438
$2018 ~7 \mathrm{th}$	sPHENIX	Direct Mean	7.52643	0.592596	0.0787353

• Direct Method better describe the data since 2 peak structures is observed in 2017 data

- RMS Energy: 2017 0° Tilted > 2018 Dual Channeling > 2017 10° Tilted > 2018 sPHENIX Rotation > 2018 sPHENIX +5
- RMS/Mean Energy: 2017 0° Tilted > 2018 Dual Channeling > 2018 sPHENIX Rotation > 2017 10° Tilted ≈ 2018 sPHENIX +5

Rescaled Energy Distribution Plots

2018 and 2018 Position Scan Rescaled Mean Energy Distribution Comparison Plot

2018 and 2018 Position Scan Rescaled Mean Energy Distribution Comparison Plot

Summary and Conclusion

- The sPHENIX EMCAI analysis has been carried out
- The uniformity of 2018 prototype has improved, particularly in the vertical direction, compared to the 2017 prototype
- According to our analysis, we estimate the energy uncertainties of the 2018 EMCAL prototype due to the non-uniformity as follows:
- Dual Channeling: 8.2%
- sPHENIX Rotation: 7.8%
- sPHENIX + 5: 7.5%

