sPHENIX Calorimeter Calibrations

Anthony Hodges (UIUC) and Blair Seidlitz (Columbia)

December 4th, 2023

sPHENIX Collaboration Meeting

sPHENIX Calorimeters

- Electromagnetic Calorimeter
- Energy reconstruction of photons and electrons

Sawtooth support structure for blocks

sPHENIX Calorimeters

- Inner and Outer hadronic calorimeters
- Charged and neutral hadronic energy measurement

sPHENIX Calorimeters

- Zero Degree Calorimeters
- Neutron energy measurement

PHENIX Documentation by Gabor David

Energy Scale Calibration – ZDC

- ATLAS-style Lagrange multiplier method
- Uncalibrated energy distribution fit and width extracted
- Events with $\mu \sigma < E_{ZDC} < \mu + \sigma$ are fed to an optimizer

Energy Scale Calibration – ZDC

- ATLAS-style Lagrange multiplier method
- Uncalibrated energy distribution fit and width extracted
- Events with $\mu \sigma < E_{ZDC} < \mu + \sigma$ are fed to an optimizer
- Optimizer then derives calibration constants based on minimizing variance of measured energy

Relative Tower Calibrations

- Can be applied to EMCal and HCal
- Tower-slope method calibrates out gain differences between towers in same η bin/same ϕ ring
- Calibration extracted by fitting low energy portion of spectrum of each tower in η bin and calibrating to the average

EMCal Calibration note

- Justin Bryan
- Justin Frantz
- Sijan Regmi

Tower Energy (GeV)

overlaid for eta 35

Energy Scale Calibration – HCals

- Calibrated the MIP scale via cosmic rays taken with cosmic ray trigger in 1008
- Additionally HCal response to muons is simulated via EcoMug simulator

HCal Cosmics Analysis Note - Shuhang Li and Hanpu Jiang

Energy Scale Calibration – HCals

 Comparison between simulated muon response (left) and data taken in 1008 experiment hall show excellent agreement

Energy Scale Calibration – HCals

- Tower-by-tower comparison of MIP peaks (MPV) in data and simulation is used to extract calibration constant
- Calibration constants take into account high-gain running mode in data
- Also scaled by simulation derived sampling fraction

- Shuhang Li and Hanpu Jiang

HCal Cosmics Analysis Note

EMCal Cosmics Calibration

- Initial energy scale is set by cosmics
- Also contains tower-by-tower relative calibration to flatten response
- Primary benefit is that cluster energies are easier to handle and clusterizer χ^2 values are more sensical
- Simulation result shown at right

EMCal Cosmics Calibration

- Data result shown at right
- Cosmics from real data come from sectors in test stand with scintillator trigger

EMCal Cosmics Calibratic

- Like HCal, EMCal cosmics calibration constants come from comparison of real data to simulation
- Used in early stages of EMCal data taking, replaced by run-independent, average π^0 energy scale calibration
- Cosmics still valuable, non-beam calibration source that can be tracked long-term

EMCal π^0 Calibration

- Utilize π^0 resonance to set energy scale
- Invariant mass calculated from pairs of clusters passing QA criteria
 - Leading cluster p_T
 - Sub-leading cluster
 - Cluster χ^2
 - Pair energy asymmetry
 - Cluster separation
- Reconstructed mass is attributed object relating to leading cluster (leading tower, η -bin, etc.)

EMCal π^0 Calibration

- Fully realized calibration is done tower-by-tower
- However, due to limited statistics, Run 23's is η -bin-by- η -bin
- Process is iterative
- Example shown here from simulation with known de-calibration to stress test method

EMCal Calibration note

- Justin Bryan
- Justin Frantz
- Sijan Regmi

EMCal π^0 Calibration

- Final calibration is *not* to PDG value of ~135MeV/c²
- Smearing of reconstructed π^0 mass and energy must be taken into account
- Because of steeply falling spectra, "true" π^0 mass is smeared upwards
- Final calibration value determined by Justin: 143.8MeV/c²

Cluster Position-Dependent Energy Correction

- Local inhomogeneity in towers can cause position-dependence in cluster energy response $(E_{Cluster}/E_{Truth})$
- Sub-tower level corrections extracted from MC

Calibrated Response: Fit μ (ereco/ge)

Cluster Position-Dependent Energy Correction

- Generally improves energy scale and resolution
- Currently improving closure at low p_T

Run 23 Initial Calibration Strategy

- ZDC: Energy scale calibration handled by calibrating single neutron peak
- HCals: Cosmic energy calibrations provide baseline, electromagnetic energy scale calibration
- EMCal: energy scale from simulation is characterized by π^0 peak in NC
 - π^0 peak in data is then calibrated to MC in each η bin
- Jet and cluster energy corrections, derived in MC at the "truth" level, can then be applied to data

Run 23 Future Calibration Strategy

- HCals: Cosmic data runs frequently taken and can update calibration when necessary
 - Possible to derive uncertainty/updated energy scale with E/p for electrons fired directly into calorimeter in MC
- EMCal: Energy scale in simulation to be studied further
 - Implementing realistic smearing, noise, and live areas derived from data
 - Determining correct value to calibration π^0 resonance to
- Jet and cluster energy corrections can then be quickly re-derived (hence push to gather all calibration software on Git) and reapplied

Questions, comments, how to get involved?

- Calorimeter Calibrations Co-Conveners:
 - Anthony Hodges (University of Illinois, Urbana-Champaign)
 - Blair Seidlitz (Columbia)
- Meeting time: Mondays, 11AM ET
 - Annoucements made to EMCal, HCal, and Calibrations mailing lists
- Current task list:

https://docs.google.com/presentation/d/113vGaBlgGebYTPs1X _9iFZ4Yr13vIpCE9TyGYcz14mU/edit#slide=id.p