Calo ZS Studies

Jaebeom Park

2024. 10. 07

Sample 6 - Sample 0 > threshold

Sample 6 - Sample 0 <= threshold

Pedestal & threshold

- Data : Hardware ZS on DCM2 account for 2 sigma of ped. fluctuation in beam data
- MC : Embedded ped. fluctuation from No beam + bias on data without zero suppression
 - Currently a uniform ZS threshold cut applied plan to load ch-by-ch tuned zs thresholds

Why does this matter?

- Is the threshold high enough to ensure no bias on tower energies
 - No energy correction on Post-Pre applied at the moment
 - Even ~1 ADC positive bias per tower -> GeV level shift in a R=0.4 jet

Chi2 cut of min(10⁴, ADC*ADC/100) Energy = Template fit Energy = Sample 6 - Sample 0

• Template fit is known to have a "positive bias" + "higher" value than Post-Pre (Sample 6 - Sample 0) • Hardware ZS is not optimized for 'all of the noise' but to effectively reject noise to secure bandwidth

- Post Pre vs Template Fit peak time position \bullet
- Wide out of time events in emcal even for ~50 ADC threshold

EMCal

- Template / post-pre for post-pre ADC > 60

Data : Ratio of template vs post-pre

Inner HCal

20

18

14

12

10

16

22

24

ηbin

• Overall higher energy values for template fit than post-pre

- Fraction of non zero-suppressed towers vs template fit ADC

Smearing effect causing a turn-on curve shape in ZS fraction vs template fit

• Smooth turn on > 60 ADC ZS threshold in EMCal (30 seems enough for HCal)

- ZS energy corrected based on higher energy template fit results
- ullet

Data : Corrected energy

Bump near threshold — could be still smearing effect / different cross calibration factors for lower energies

- Data-driven RMS varying vs eta up to ~20 ADC counts
- Consistent with no beam + bias on results \bullet
- MC CaloWaveform : ulletPedestal fluctuations emulated with embedding to no beam + bias voltage on data w/o ZS

MC : Pedestal template vs post-pre

Selected towers : ensure no signal contribution Example of ~20 ADC 1 sigma ped. fluctuation for emcal

MC EMCal : Pedestal template vs post-pre

- Positive bias for template fit (known)

• 10 ADC software ZS level — example of too low th.—> Smearing effect causes bump structure near threshold

MC EMCal : Pedestal template vs post-pre

- Getting similar mean for pure Post-Pre only in ~60 ADC ZS threshold

• Need to put a high enough software ZS level to ensure no bias on the pedestal from the template fit

- Template/Post-Pre response vs energy
- ~5% difference in the EMCal north side
 - —> Similar to data above 60 ADC
- Uniform across input energy

ergy side

- Tower isGood : !(noCalib + isHot + badChi2)
 - **O** Jet tower input : removing towers for isHot or badChi2 or noCalib or isNotInstr
 - EMCal cluster : removing towers for !isGood or badTime Ο
 - **O** Topo cluster : removing towers for !isGood
 - **O** Cluster Isolation : removing towers for isHot or badChi2 or isNotInstr or badTime

Perhaps a good time to converge for a single usage of a "good" tower status?

- Need to put high enough software ZS to not biased from the template fit
 - Tests ongoing for embedding same ch-by-ch ZS level based on hardware thresholds
 - The 'high enough' threshold should eliminate out of time contributions
 - or need to introduce timing cut
- Cross calibration corrections (template vs post-pre) for low-energies below software ZDC
- Finalize "isGood" function and apply it everywhere consistently

Back-up

EMCal

8

Timing of template

Inner HCal

Outer HCal

Template Fit peak position for ADC > 60

- Combined ADC distribution \bullet
 - If Post-Pre > Threshold —> Template fit
 - else if Post-Pre <= Threshold -> Post-Pre

Need to study with higher energy data or simulation for calibration of Post-Pre

- Bump structure near the threshold to switch to template fit

Noise derived from the negative side of the Post-Pre ADC distribution

- Idea to take negative side of "pre" and "post" to derive the noise level
- Ch-by-ch noise calculation and take RMS \bullet as ZS threshold
- Even with ZS, "pre" and "post" information are ulletstored in the data stream

Run 43853 (beginning of store)

Run 43882 (after ~5-6 hours of store)

EMCal

Run 43889 (end of store)

Run 43853 (beginning of store)

Run 43882 (after ~5-6 hours of store)

IHCal

Run 43889 (end of store)

OHCal

Run 43853 (beginning of store)

Run 43882 (after ~5-6 hours of store)

Run 43889 (end of store)

sEPD data-driven noise studies

Run 43853 physics (beginning of store)

sPHENIX Internal, Run 43853, sEPD South

Run 43882 physics (after ~5-6 hours of store)

sPHENIX Internal, Run 43882, sEPD South

Run 43889 physics (end of the store)

sPHENIX Internal, Run 43889, sEPD South

