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Abstract

Heavy ion collisions provide a direct experimental framework to study the properties of the Quark Gluon Plasma. The sPHENIX detector will be the next state-of-the-art system to measure
hard processes observables with high accuracy in a broad pT range. The sPHENIX tracking system will feature a compact Time Projection Chamber working in continuous read-out mode as
the main tracking detector. The compact TPC combines both good momentum resolution, below 2% at 5 GeV/c, together with high rate withstand, as high as 100 kHz. It spans
geometrically in a volume covering 2.2 units of pseudo-rapidity and 20 < R < 78 cm. One of the technologies considered is a quad-GEM configuration connected to 200k readout channels
using SAMPA chips able to read ~4Gbit/s. For such configuration one of the key aspects of the design will be the ability to mitigate spacecharge distortion due to ion back flow. Several
studies on this regard were done and will be shown here.
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SPHENIX Compact Time Projection Chamber 8 Sources of SpaceCharge PileUp

Physical Coverage:
e R[20-78] cm
e 7[-105.5, +105.5] cm

Primary ionization: As particles ionize the gas
volume, electrons drift quickly towards the
readout plane, while ions move slowly towards

The more molecules ionized, the better
energy resolution, but also the worse
distortions due to space charge.
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Electric Field inside volume . e
1. Grounded Shell and Space Charge sy
(this work), plus

2. Graded Potential and no charge

(for more on this topic, see Prakhar’s
poster)

Single electron moving in electric and magnetic field
under frictional force: Langevin Equation

Simulation of SpaceCharge PileUp

charge of the drifting particle
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Predicted Effects Under Several Running Conditions of the sPHENIX Experlment at the RHIC

Electric Field Distortions
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Initial Charge Density Simulation

e Evaluate primary ionization left in volume by
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T The top (bottom) plots show the distortion in the radial (phi)
e direction in the regions where the distortion is maximal. For the
- Ne-based gases and setup under consideration, the expected
] [10‘]) ‘ distortions are below 2 cm at 15kHZ and 3 cm at 50 kHz.
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