

The sPHENIX Experiment at RHIC

Cameron Dean, on behalf of the sPHENIX collaboration Los Alamos National Laboratory 28th July 2020 ICHEP

- What is sPHENIX?
- Tracking overview
- Calorimetry overview
- Current status (how has Covid-19 affected us?)
- Prospects for heavy flavor physics in heavy ion collisions

What is sPHENIX?

- Super PHENIX is the successor to the Pioneering Hadron Electron Nuclear Interaction eXperiment (PHENIX)
- A barrel detector designed to study heavy flavor and jet physics in a heavy ion environment
- Uses both new technology and technology shared with other experiments

- Located in the PHENIX experimental hall, IP-8
- Last PHENIX data taking was 2016
- Data taking expected to begin in 2023
- Top The location of PHENIX at RHIC
- Left A PHENIX event display

July 28, 2020

SPHE

What is reused from PHENIX?

sPHENIX at RHIC

SPHENIX

What is sPHENIX?

BaBar Magnet

First run year	2023	
$\sqrt{s_{NN}}$ [GeV]	200	
Trigger Rate [kHz]	15	
Magnetic Field [T]	1.4	
First active point [cm]	2.5	
Outer radius [cm]	270	
$ \eta $	≤1.1	
<i>z_{vtx}</i> [cm]	10	
N(AuAu) collisions*	1.43x10 ¹¹	

* In 3 years of running

- Tracking currently consists of 3 sub-detectors; MVTX, INTT, TPC
- Task force studying the addition of a 4th sub-detector

The Maps VerTeX detector

- Comprises of 3 layers of monolithic active pixel sensors using the ALICE ALPIDE
- The front-end readout uses the ALICE Readout Unit
- The back-end uses the ATLAS FELIX

July 28, 2020

MVTX	
3 active layers	

- 9 ASICs/stave
- 27 cm active length/stave

	ALPIDE thickness [µm]	50		
	Pixel size [µm] / matrix	29 x 27 / 1024 x 512		
	Technology	180nm CMOS		
	Power Consumption [mW/cm ²]	40 (mean), 300 (peak)		
Stave Material Budget Timing resolution		0.3% X ₀		
		A few μs (tunable)		
	XZ spatial resolution [µm]	< 6		
ī	sPHENIX at RHIC			

Left – Spatial resolution as a function of trigger delay Middle – Mean number of pixels fired per event as a function of trigger delay for different pixel settings for four different staves. (The RHIC trigger latency is ~4µs) Right – IP_{XZ} resolution (simulation)

SPHENIX

- Compact TPC, 20 < r [cm] < 78 (active volume > 30cm)
- Spatial resolution < 200 μm
- dE/dx resolution of ~6.6%
- Charge collection enabled by GEMs and measured by the ALICE SAMPA
- IBF is minimized, TPC is live at all times
 - IBF < 0.5% at a few kV in GEMs
- A task force is studying the space-charge effects

Top – Overview of TPC structure Bottom left – Resolution of the TPC; solid line is measured, dashed line is extrapolated to sPHENIX magnetic field Bottom right –TPC field cage

sPHENIX at RHIC

July 28, 2020

EM calorimetry at sPHENIX

- Sampling EMCal, using SciFi in tungsten and epoxy
- 20.1X₀ and 0.83 λ_{int}
- $\sigma/E \leq 16\%/E \oplus 5\%$
- 90 < r [cm] < 116
- No. towers = 24576
- Readout: Hammamatsu MPPC SiPM

SPHE

Top – A completed EMCal block. Bottom left – Design of an EMCal sector (IP is towards the left). Bottom middle – Cluster energy vs input energy. Bottom right – EMCal prototype https://arxiv.org/abs/2003.13685 sPHENIX at RHIC July 28, 2020

Hadron calorimetry at sPHENIX SPHENE

- Two segments on either side of the magnet
- Alternating tiles of steel (outer) or aluminium (inner) and scintilla
- 3.8λ_{in}
- r [cm] < 270
- Same electronics as EMCal
- Outer HCal also acts as magnet return and support

Current production status

- Experimental hall is cleared and ready for construction
- MVTX: Staves production has resumed at CERN and all RU's are delivered
- TPC: Cooling of electronics is now under test and GEMS are ordered from CERN
- ECAL: All tungsten and SiPMs are delivered, 70% of the tiles and fibres received
- HCAL: Assembly has resumed after Covid-19 shutdown
- Analysis and software:

Simulations are improving daily, now adding secondary materials such as service material Track and vertex reconstruction have hard working, dedicated task-forces

Event reconstruction tools are progressing well

Several physics topical groups exist:

Heavy flavour, cold GCD, jets and quarkonia

Bottom – OHCal tiles

Physics potentials

SPHENIX

- Major focus of experiment is c/b-quark studies in Heavy lons
- Their masses are greater than Λ_{QCD} and T_{QGP}
- Can use pQCD without thermal production of hadrons as temperature drops
- c and b see the complete QGP evolution

Left – $K^{\mp}\pi^{\pm}$ reconstruction Middle and right – e⁺e⁻K⁺K⁻ reconstruction (middle – without mass constraints, right – with mass constraints)

sPHENIX at RHIC

Physics potentials

Left – c/b jet distributions from secondary vertex mass Middle – Directed flow predictions from D^0 Right – R_{AA} predictions from prompt and non-prompt D^0 SPHE

Conclusions

- sPHENIX is a next generation detector heavy ions
- Expertise taken from the PHENIX collaboration and several others
- Each subdetector is well suited for precision heavy flavour measurements in HI
- These measurements are complimentary to the LHC
- Production and construction is progressing on schedule
- The collaboration has adapted to the challenges posed by the pandemic
- sPHENIX is on track to collect data in 2023 2025
- Let's see what the next few years holds

Thank you

Back Up

ePHENIX

Electron Ion Collider Schedule

sPHENIX at RHIC

SPHENIX

EIC Design

sPHENIX at RHIC

Year	Species	Energy [GeV]	Phys. Wks	Rec. Lum.	Samp. Lum.	Samp. Lum. All-Z
Year-1	Au+Au	200	16.0	7 nb^{-1}	$8.7 { m ~nb^{-1}}$	34 nb^{-1}
Year-2	p+p	200	11.5		48 pb^{-1}	$267~{ m pb}^{-1}$
Year-2	p+Au	200	11.5		0.33 pb^{-1}	1.46 pb^{-1}
Year-3	Au+Au	200	23.5	14 nb^{-1}	26 nb^{-1}	88 nb^{-1}
Year-4	p+p	200	23.5		149 pb^{-1}	$783 { m ~pb^{-1}}$
Year-5	Au+Au	200	23.5	14 nb^{-1}	48 nb^{-1}	92 nb^{-1}

4th tracking detector

Reconstructed tracks from proton-lead collisions. Taken at the 2019 MVTX test beam at Fermilab. No alignment has been performed

Magnetic Map

July 28, 2020

24