

The jet physics program with sPHENIX

Virginia Bailey for the sPHENIX Collaboration March 1, 2022

WWND 2022

sPHENIX physics program

sPHENIX detector

Tracking detector:

- MAPS-based Vertex Tracker (MVTX)
- Intermediate Silicon Tracker (INTT)
- Time Projection Chamber (TPC)

Superconducting Magnet

1.4T solenoid magnet

Calorimeter:

- Electromagnetic calorimeter (EMCal)
- Inner hadronic calorimeter (inner HCal)
- Outer hadronic calorimeter (outer HCal)

High rate DAQ and trigger systems

o 15 kHz trigger

sPHENIX calorimeter

Full calorimeter covers 2π in azimuth and $|\eta| < 1.1$

EMCal:

Sampling calorimeter of scintillating fibers embedded in tungsten blocks
 Δη × Δφ = 0.025 × 0.025 towers

sPHENIX calorimeter

Full calorimeter covers 2π in azimuth and $|\eta| < 1.1$

EMCal:

- Sampling calorimeter of scintillating fibers embedded in tungsten blocks
- $\circ \Delta \eta \times \Delta \phi = 0.025 \times 0.025$ towers

Inner and outer HCal:

- Sampling calorimeter of scintillating tiles and steel absorber plates
- $\circ \Delta \eta \times \Delta \phi = 0.1 \times 0.1$ towers

sPHENIX calorimeter

Full calorimeter covers 2π in azimuth and $|\eta| < 1.1$

EMCal:

- Sampling calorimeter of scintillating fibers embedded in tungsten blocks
- $\circ \Delta \eta \times \Delta \phi = 0.025 \times 0.025$ towers

Inner and outer HCal:

- Sampling calorimeter of scintillating tiles and steel absorber plates
- $\circ \Delta \eta \times \Delta \phi = 0.1 \times 0.1$ towers

Calorimeters read out with SiPMs

sPHENIX run plan

7

	Year	Species	$\sqrt{s_{NN}}$	Cryo	Physics	Rec. Lum.	Samp. Lum.	
			[GeV]	Weeks	Weeks	z <10 cm	z < 10 cm	
< 1 year until data	2023	Au+Au	200	24 (28)	9 (13)	$3.7 (5.7) \mathrm{nb}^{-1}$	4.5 (6.9) nb ⁻¹	Large luminosity in first year
	2024	$p^{\uparrow}p^{\uparrow}$	200	24 (28)	12 (16)	0.3 (0.4) pb ⁻¹ [5 kHz]	45 (62) pb ⁻¹	
						4.5 (6.2) pb ⁻¹ [10%- <i>str</i>]		
	2024	p^{\uparrow} +Au	200	-	5	0.003 pb ⁻¹ [5 kHz]	$0.11 \ {\rm pb}^{-1}$	
						$0.01 \text{ pb}^{-1} [10\%\text{-str}]$		
	2025	Au+Au	200	24 (28)	20.5 (24.5)	13 (15) ${ m nb}^{-1}$	21 (25) nb ⁻¹	

Why jet measurements at RHIC?

Different QGP:

8

 Temperature/temperature evolution different between LHC and RHIC

Why jet measurements at RHIC?

- Different QGP:
 - Temperature/temperature evolution different between LHC and RHIC
- Different probes:
 - Different quark vs. gluon jet mixture
 - Lower kinematic rangeradiation close to the QGP medium scale early in collision

Jet kinematic reach

10

- Expect jet measurements out to 70 GeV- overlap with LHC measurements
- High stats for photons (γ -jet measurements) and charged hadrons (fragmentation functions, substructure)

Jet kinematic reach

11

3 year run plan projection

Signal	Au+Au 0–10% Counts	p+p Counts
Jets $p_{\rm T} > 20 {\rm GeV}$	22 000 000	11 000 000
Jets $p_{\rm T} > 40 { m GeV}$	65 000	31 000
Direct Photons $p_{\rm T} > 20 {\rm GeV}$	47 000	5800
Direct Photons $p_{\rm T} > 30 { m GeV}$	2 400	290
Charged Hadrons $p_{\rm T} > 25 {\rm GeV}$	4 300	4100

Calorimeter jet trigger allows for high statistics, high p_T jet sample + unbiased pp reference

From: beam use proposal

12

□ Constituents: $\Delta \eta \times \Delta \phi = 0.1 \times 0.1$ towers (EMCal + HCals)

□ UE subtraction: two iterations, subtract:

$$\frac{\mathrm{d}^2 E_{\mathrm{T}}}{\mathrm{d}\eta \mathrm{d}\phi} = \frac{\mathrm{d}E_{\mathrm{T}}}{\mathrm{d}\eta} \left(1 + 2\sum_n v_n \cos\left(n\left(\phi - \Psi_n\right)\right) \right) \quad \begin{array}{c} \text{determined} \\ \text{event-by-event} \end{array} \right)$$

Method from: *Phys.Rev.C* 86 (2012) 024908

13

□ Constituents: $\Delta \eta \times \Delta \phi = 0.1 \times 0.1$ towers (EMCal + HCals)

□ UE subtraction: two iterations, subtract:

$$\frac{d^{2}E_{T}}{d\eta d\phi} = \frac{dE_{T}}{d\eta} \left(1 + 2\sum_{n} v_{n} \cos\left(n\left(\phi - \Psi_{n}\right)\right)\right) \qquad \text{determined} \\ \text{event-by-event} \\ \text{Average energy} \\ \text{density, excluding} \\ \text{regions with jet} \\ \text{candidates} \qquad \qquad \text{Method from: } \underline{Phys.Rev.C 86 (2012) 024908} \\ \text{Method from: } \underline{Phys.Rev.C 86 (2012) 0249$$

14

□ Constituents: $\Delta \eta \times \Delta \phi = 0.1 \times 0.1$ towers (EMCal + HCals)

□ UE subtraction: two iterations, subtract:

• similar JES in pp and Au+Au \rightarrow good UE subtraction

Particle flow jets in sPHENIX

- Ongoing work to implement particle flow jets in sPHENIX
- Takes advantage of calorimeter + precision tracking

16

- Excellent energy response in pp simulations
- Use for substructure measurements

Jet measurements in sPHENIX

- Study at RHIC:
 - Path-length dependence of energy loss
 - Mass dependence of energy loss (light vs. heavy flavor jets)
 - Flavor dependence of energy loss (quark vs. gluon jets)
 - How does medium resolve jet substructure?

Full characterization of final state

Different QGP initial conditions and evolution at RHIC and LHC

Same hard process

Dijet asymmetry

- Study path-length dependence of energy loss
- Potential early measurement of jet quenching at RHIC energies

$$A_J = \frac{p_{T,1} - p_{T,2}}{p_{T,1} + p_{T,2}}$$

Jet v₂

Projected yields

- Correlations between energy loss and initial state → pathlength dependence of energy loss
- sPHENIX event plane detector (sEPD) allows for measurements of event planes away from jets of interest (see talk by Rosi Reed on Thursday)

Jet v₂

Simultaneous explanation of R_{AA} and v_2 ongoing "puzzle"

Photon + jet

- High statistics allow for photon
 + jet measurements
- Photon provides unquenched tag of jet momentum
- Flavor dependence of energy loss

Jet substructure

22

- Fine segmentation of calorimeter + good tracking resolution allows for substructure measurements
- Study how the medium resolves jet substructure

b-jets

- MVTX allows for tagging of heavy-flavor decays
- Study mass dependence of energy loss

Jets in small systems

24

□ p+Au data:

- Cold nuclear matter effects
- Potential for energy loss in small systems
- + cold QCD spine measurements

Status and timeline

25

- Detector assembly ongoing at BNL
 - Magnet installed in October
 - Outer HCal installation complete
 - Inner HCal and EMCal construction ongoing
- High statistics simulation campaign ongoing
 - Prep for processing real data + use for performance studies
- Data taking to being in Feb. 2023

Summary

- □ sPHENIX detector will provide:
 - Full coverage electromagnetic and hadronic calorimetry
 - High precision tracking
 - Fast readout rate
- Design allows for:
 - High statistics samples of hard probes (jets, photons, high p_T charged hadrons)
 - Full jet reconstruction → complimentary jet measurements to LHC
- Measurements will improve our understanding of small-scale behavior of the QGP

