CPAD Workshop 2023 SLAC National Accelerator Laboratory, November 7 - 10, 2023

sPHENIX TPC in the 2023 commissioning run

E. Shulga on behalf of the sPHENIX collaboration

sPHENIX experiment

Collaboration of 320 members from 80 institutions in 13 countries First data taking early 2023 3-year run plan

Superconducting Magnet (1.4 T solenoid) formerly BaBar

Tracking system:

MAPS-based Vertex Tracker (MVTX) Intermediate Silicon Tracker (INTT) Time Projection Chamber (TPC)

Calorimetry:

Electromagnetic Calorimeter (EMCal) inner Hadronic Calorimeter (iHCal) outer Hadronic Calorimeter (oHCal)

High rate:

15 kHz Trigger, >10 GB/s DAQ

Large acceptance:

full ϕ coverage; for |z| < 10 cm: $|\eta| \le 1.1$

sPHENIX physics goal

The 2015 LONG RANGE PLAN for NUCLEAR SCIENCE

From DVP @ DNP

There are two central goals of measurements planned at RHIC, as it completes its scientific mission, and at the LHC: (1) Probe the inner workings of QGP by resolving its properties at shorter and shorter length scales. The complementarity of the two facilities is essential to this goal, as is a state-of-the-art jet detector at RHIC, called sPHENIX. (2) Map the phase diagram of QCD with experiments planned at RHIC. 2015 US NP LRP

sPHENIX TPC

Time Projection Chamber (TPC) Compact: 20 < r [cm] < 78 (active (>30cm)Gas: $Ne/CF_4 \Rightarrow Ar/CF_4$ Nominal drift field E = 400 V/cm and magnetic field B = 1.4 Talong z Required spatial resolution: $< 150 \mu \text{m}$ Charge collection via GEMs \rightarrow ALICE SAMPA Gateless and continuous readout (GEMs for IBF suppression)

 $2(z), 12(\phi), 3(r)$

E ₇₁				2 1
E ₁₂				2 1
			0.00	
E _{T3}		l	-	2 п
E _{ind} read	sout anode	<u> </u>		2 1
1	E _{T3} E _{ind} read	E ₁₃ E _{pd} readout anode	E ₁₃ E _{nd} readout anode	E ₁₃

Quad-GEM Gain Stage Operated @ low IBF

E Shulga

Field cage

- TPC wall thickness is dominated by an insulating kapton layer
- 45 kV at the "central membrane" & 18 layers of kapton

Inner field cage	X_0 [cm]	cm	%X_0
1/2 Oz Copper	1.4	0.0017	0.12
kapton	28.6	0.0051	0.02
1/2 Oz Copper	1.4	0.0017	0.12
Kapton (coverlay)	28.6	0.0076	0.03
Ероху	35.7	0.0127	0.04
Kapton (insulating)	28.6	0.2286	0.80
Carbon Fiber	23.4	0.0254	0.11
Ероху	35.7	0.0127	0.04
Honeycomb	845.4	1.2700	0.15
Ероху	35.7	0.0127	0.04
Carbon Fiber	23.4	0.0254	0.11
TOTAL		0	1.56

Quad-GEM

- Planned gas after 2019 test beam: Ne/CF_4 (50:50)
- GEM 3 & 4 are adjusted to achieve a total effective gain of 2000
- GEM 1 & 2 provide effective gain of 1 and used to stop IBF

 $E_{\rm drift} = 400 \, {\rm V/cm}$

			\mathbf{E}^{drift}
GEM foil	U [V]	Δ V [V]	[V/cm]
G4 b	600	-	-
G4 t	1098	498	-
G3 b	1128	30	95
G3 t	1578	450	-
G2 b	2778	1200	3750
G2 t	3110	332	-
G1 b	4310	1200	3750
G 1 t	4578	267	-

Readout structure

- Overall readout scheme: padplane -> FEE -> DAM+EBDC -> Storage
- Data rate: ~10Mbits per Au+Au MB events from whole TPC

Single FEE

TPC operations in run 2023

First Collisions in TPC June 2023: 12x12 AuAu, 100 Hz ZDC, 20 Hz trigger

TPC performance is within designed characteristics

sPHENIX Time Projection Chamber 100 Hz ZDC, MBD Prescale: 2, HV: 4.45 kV GEM, 45 kV CM, X-ing Angle: 2 mrad 2023-06-23, Run 10931 - EBDC03 reference frame 34 Au+Au sqrt(s_{N})=200 GeV

Baseline shift studies

ALICE has reported several features in the readout system

1st addressed with 20 nF capacitor to the bottom of the bottom GEM

 2^{nd} is currently studied & provide baseline shift on the order of few ADCs

https://arxiv.org/pdf/2304.03881.pd

Cosmics

sPHENIX Tracker 2023-08-23, Run 25926 - All EBDCs, BCO 128330850911 0-Field Cosmics Data Linear fit to MVTX, INTT, and TPOT hits only

- Collider has unexpectedly stopped operation in August
- Commissioning has been continued with cosmic trigger provided by Hcal
- This data will be used for allignement, distortion and performance caracterizations

Distortion Monitors

Diffuse Laser

- Al stripes on Central Membrane
- •
- kHz diffuse UV laser releases e
- Reconstructed stripes measure distortion at CM
- fast, interleaved with data \Rightarrow monitors fluctuations

- 3 steerable lasers on each side of TPC
- Almost all points can be reached by 2+ lasers
- Creates straight-line tracks at ~Hz

- Reconstructed laser track measures distortion in volume
- Slow, not used during run \Rightarrow monitors static distortion

E Shulga

Diffuse laser

- Test laser flashes on the TPC Central Membrane reconstructed
- Stripe pattern from the Central Membrane is present in the events
- Work is ongoing to use pattern to reconstruct distortions

- 5 of 6 lasers
- GEM gains below nominal
- Survey data not yet incorporated into pad or truth positions

Diffuse laser

- Test laser flashes on the TPC Central Membrane reconstructed
- Stripe pattern from the Central Membrane is present in the events
- Work is ongoing to use pattern to reconstruct distortions

- 5 of 6 lasers
- GEM gains below nominal
- Survey data not yet incorporated into pad or truth positions

Issues during the run

- Pressure and temperature are crucial for all gaseous detectors
- Was not perfect during commissioning ⇒ several GEM stripes are shortened HV divider × 72 cards

16 stripes, 2 sides

Issues during the run

- Pressure and temperature are crucial for all gaseous detectors
- Was not perfect during commissioning \Rightarrow several GEM stripes are shortened

- Solutions:
 - Move resistor chains out of the bore & replace them with individual HV power supplies letter on
 - Improve cooling conditions by introducing additional chiller in the line

Conclusions

- First sPHENIX commissioning run has started in May 2023
- TPC recorded first 12x12 bunch AuAu collisions in June 2023
- Commissioning results:
 - Significant DAQ development on the way to the streaming readout
 - Diffuse laser has been tested: timed in and several runs have been taken
 - Several improvements are designed and scheduled for the next few months to make TPC operation and maintenance more effective
- Looking forward for the data from the next 2024 run !

Backup

Zig-zag pad structure

2mm pad pitch and ~0.5mm period

- Simulation expected the resolution of 134 μm
- On bench studies @ BNL have shown resolution of $100 \,\mu\text{m}$ in $750 \,\text{V/cm}$ drift field and Ar-based gas
- Test beam @ Fermi Lab Summer 2019 results provide average resolution of 90-130 μm for Ne/CF₄ 50:50

Motor Position (mm)

TPC gas: IBF test

- Cu provides 8 keV and 8.9 keV lines at 15 kV
- Drift fields define GEM stack transparancy to ions
- Thus, only ΔV on GEMs is scaled
- 0.3 % IBF is measured for both gas mixtures

			\mathbf{E}^{drift}
GEM foil	U [V]	Δ V [V]	[V/cm]
G4 b	600	-	-
G4 t	1168	568	-
G3 b	1198	30	95
G3 t	1711	513	-
G2 b	2911	1200	3750
G2 t	3289	378	-
G1 b	4489	1200	3750
G1 t	4793	305	-

ᡙᠣᡗ᠇

0.002

Gain & IBF measurements

TPC assembly

Frontend Electronics (FEE)

18 Ohm

Inside SAMPA

- 8 SAMPAv5 + 1 FPGA + 1 QSFP (4 Tx/Rx)
 - FPGA receives data from SAMPA and sends to optical link, and processes clock and slow control data from DAM.
 - JTAG is implemented over optical link.
 - Two data links are available
 - Input protection diodes at input of each channel
 - 6mW/ch for SAMPA
 - Continuous readout mode
- Use of newly developed SAMPA v5
 - Two shaping times: 80nsec, 160nsec
 - Two gains: 30mV/fC, 20mV/fC
 - SAR ADC: 5/10/20MHz sampling. At sPHENIX, 4.7/9.4/18.8MHz
- Three powers: 4V dig, 2V dig, and 2V ana
 - Typical rating: ~1A@4V, ~2A@2Vdig, ~2.5A@2V ana
 - Total power consumption: <15W
 - Water cooling system has been developed to take this heat
- It works fine at 1.5T and 100krad.
- Costs: \$560 per board (excl SAMPA chips, incl PCBs and assembly)

E Shulga