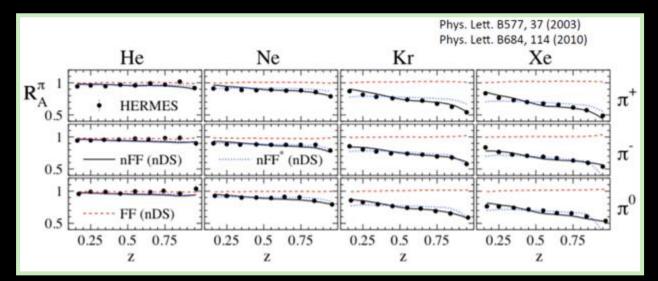
Towards EEC in Cold QCD at the sPHENIX Experiment Alex Clarke, Derek Anderson, John Lajoie Iowa State University For the sPHENIX Collaboration


SPHENIX

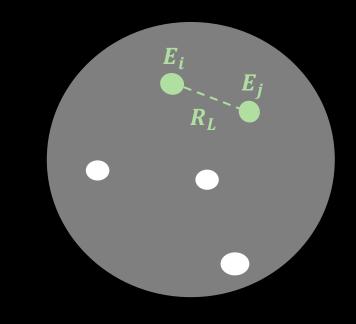
TREAT WARDING IN

Introduction | Cold Nuclear Matter Effects

- Modification of parton fragmentation in nuclei is expected...
 - But measured jet yields convolute several different
 Cold Nuclear Matter (CNM) effects
 - Challenging to isolate effects experimentally!
- One example: IS-FS Color Exchanges
 - scattered partons exchange gluons w/ beam fragments
 - \Rightarrow Leads to TMD Factorization breaking!
- To study these color exchanges:
 - Need an observable sensitive to both nonperturbative & factorization scales...

HERMES; PLB 577, 37 (2003); PLB 684, 114 (2010)

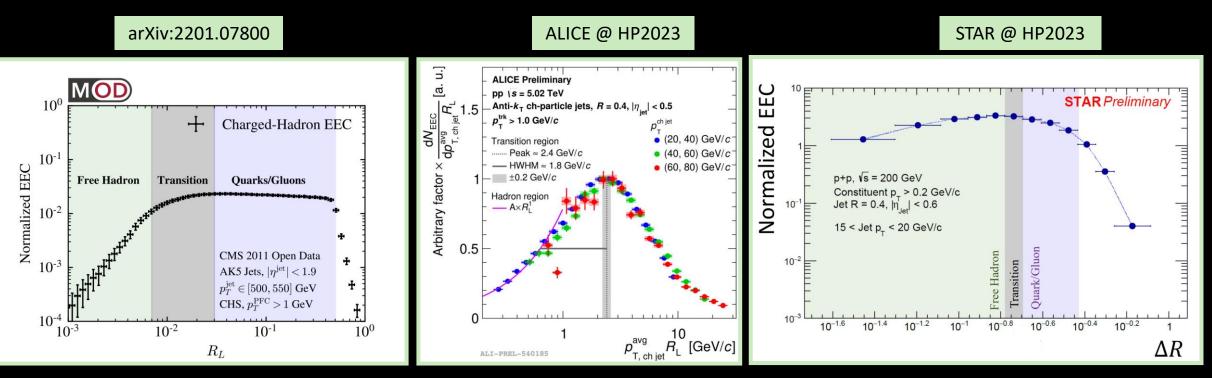
Introduction | ENC Definition


2-Point Energy Correlators (EEC)

$$EEC = \sum_{jet} \sum_{(ij)\in\Delta R} \frac{E_i E_j}{E_{jet}^2}$$

N-Point Energy Correlators (ENC)

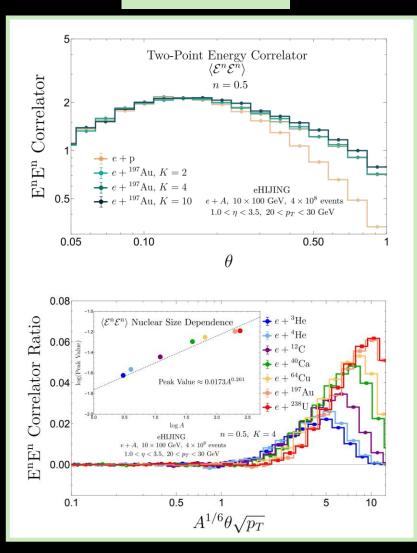
$$\operatorname{ENC}(R_L) = \left(\prod_{k=1}^N \int d\Omega_{\vec{n}_k}\right) \delta(R_L - \Delta R_L) \frac{\langle \mathcal{E}(\vec{n}_1) \mathcal{E}(\vec{n}_2) \dots \mathcal{E}(\vec{n}_N) \rangle}{E_{\text{jet}}^N}$$


- $\mathcal{E}(\vec{n}_i)$ = ith asymptotic energy operator
- R_L = longest distance out of N directions

- N-point energy correlators: measure statistical correlations in energy flux within a jet
 - Inherently IRC safe
 - Calculable in pQCD

Introduction | ENC in Vacuum

- In vacuum: allow for clear distinction b/n
 perturbative and nonperturbative regimes
 - Cleanly image structure as a function of angular scale
 - ☞ <u>arXiv:2201.07800</u>


• Recent studies demonstrate transition happens at $R_L p_T^{jet} \sim 2.5$ GeV/c at RHIC and LHC \bigcirc See <u>STAR & ALICE</u> preliminary results

at HP 2023

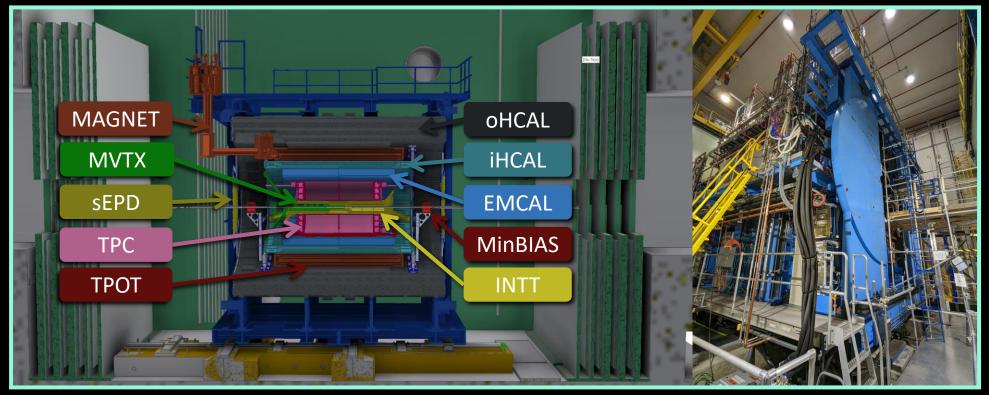
Introduction | ENC in Nuclei

SPHENIX arXiv:2303.08143

- ENC provide a clean observable to image jet fragmentation in vacuum
 - \bigcirc But what about in nuclei?
- Recently: Devereaux et al studied potential of ENC at EIC to analyze CNM effects
 - Considered simulated e+p/e+A collisions w/ eHIJING
 - Study suggests that ENC can:
 - a) Cleanly identify characteristic scale of onset of nuclear medium modification (upper plot)
 - b) Identify characteristic scale of modification associated with nuclear size (lower plot)
 - Ref: <u>arXiv:2303.08143</u>
- **ENC** provide a strong observable to study CNM effects!

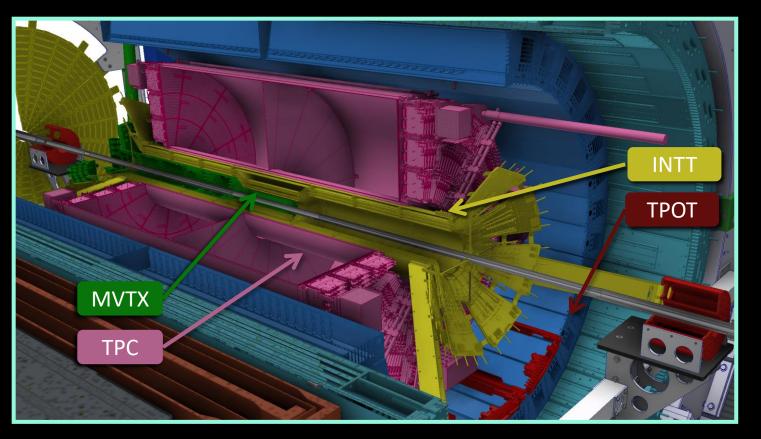
Introduction | Goal and Talk Outline

- Having a hadronic baseline for leptonic measurements will be valuable
 - Recall: IS-FS color exchanges will happen in p+p/p+A
 - But won't happen in e+p/e+A!
- Our goal: measure ENC in p+p (and p+Au, if available) at sPHENIX for baseline point of comparison
 C Kinematics at EIC most comparable to RHIC
- Also plenty of other physics opportunities for ENC in CNM systems
 - e.g. analyzing nPDFS!


Outline:

- 1) sPHENIX Overview
- 2) p+p Analysis
- 3) p+Au Analysis
- 4) Conclusions & Outlook

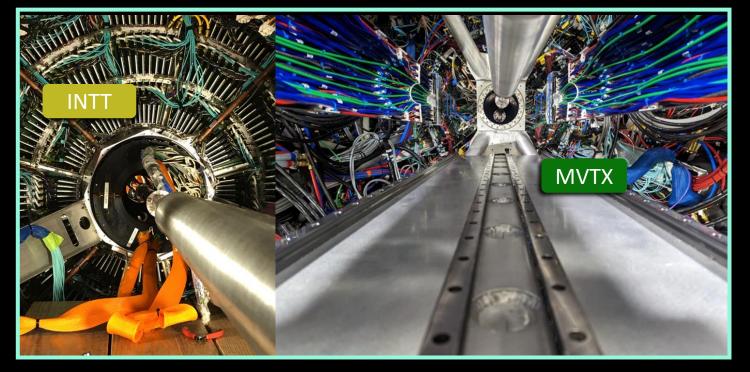
sPHENIX | Overview


- sPHENIX: brand new, state of the art HENP experiment at RHIC
 - Purpose built for precision jet/HF studies and rare probes

• Key features:

- Large acceptance (2π in φ , $|\eta| < 1.1$)
- Full EM & Hadronic calorimetry
- High precision tracking/vertexing system

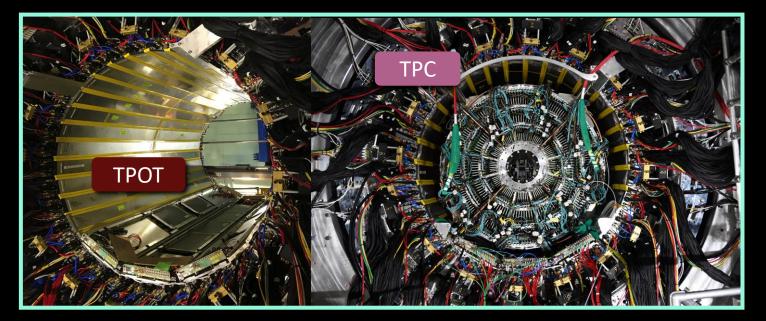
sPHENIX | Tracking System


- Measuring ENC requires fine spatial resolution
 - ∴ Will study track-based jets here
- sPHENIX deploys a multi-staged tracking system
 - 2 innermost systems are Si-based (MVTX, INTT)
 - Precision timing/vertexing
 - 2 outermost are gaseous (TPC, TPOT)
 - > Momentum resolution (TPC)
 - > Calibration (TPOT)

• For more info:

- HF Overview (Jin Huang: 11/6 @ 11:30 am)
- Tracking Highlights (Charles Hughes: 11/9 @ 2:40 pm)
- Calorimeter Highlights (Joe Osborn: 11/9 @ 3 pm)

sPHENIX | Tracking System


- Measuring ENC requires fine spatial resolution
 - ... Will study track-based jets here
- sPHENIX deploys a multi-staged tracking system
 - 2 innermost systems are Si-based (MVTX, INTT)
 - > Precision timing/vertexing
 - 2 outermost are gaseous (TPC, TPOT)
 - Momentum resolution (TPC)
 - Calibration (TPOT)

• For more info:

- HF Overview (Jin Huang: 11/6 @ 11:30 am)
- Tracking Highlights (Charles Hughes: 11/9 @ 2:40 pm)
- Calorimeter Highlights (Joe Osborn: 11/9 @ 3 pm)

sPHENIX | Tracking System

- Measuring ENC requires fine spatial resolution
 - ... Will study track-based jets here
- sPHENIX deploys a multi-staged tracking system
 - 2 innermost systems are Si-based (MVTX, INTT)
 - > Precision timing/vertexing
 - 2 outermost are gaseous (TPC, TPOT)
 - Momentum resolution (TPC)
 - > Calibration (TPOT)

For more info:

 \cap

- HF Overview (Jin Huang: 11/6 @ 11:30 am)
- Tracking Highlights (Charles Hughes: 11/9 @ 2:40 pm)
- Calorimeter Highlights (Joe Osborn: 11/9 @ 3 pm)

Analysis (p+p) | Simulation Setup

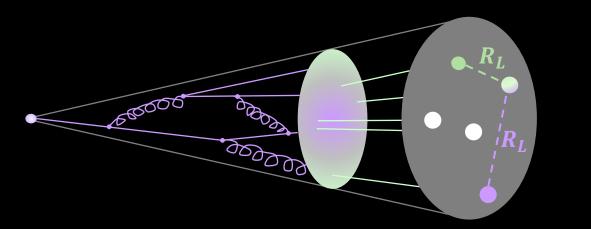
p+p Simulation

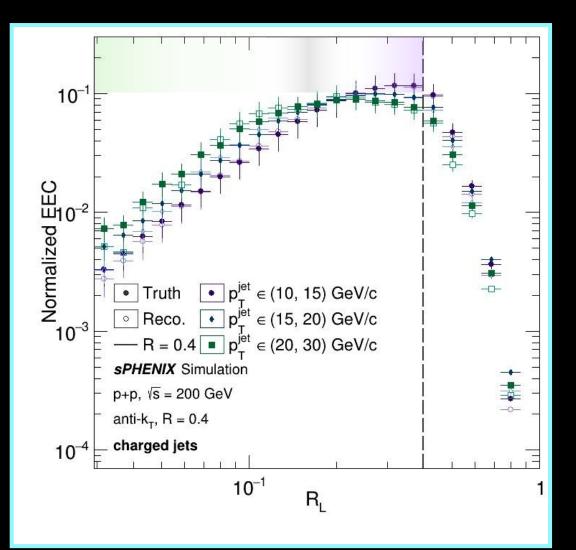
- PYTHIA-8, $\hat{p}_T > 7$ GeV/c
- Simulated 3 MHz of pileup p+p collisions
- 3M events analyzed

Jet Definition

- Anti- k_T algo., p_T -recomb. scheme
- R = 0.4
- $|\eta^{jet}| < 0.7$

- p+p collisions and pileup simulated with PYTHIA-8
 - Processed by full sPHENIX reconstruction
 - PYTHIA-8: Sjöstrand et al; CPC 191, 159 (2015)
- Jets reconstructed with parameters in box from either:
 - Final-state charged MC particles ("truth jets")
 - Or reconstructed tracks ("reco. jets")
- Track selection criteria listed in backup

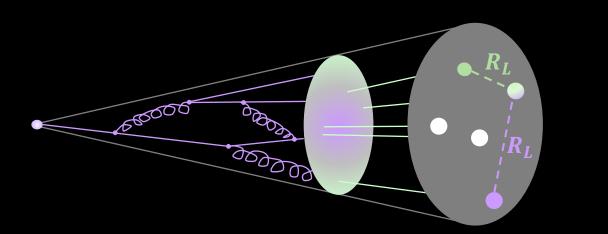

November 7th, 2023

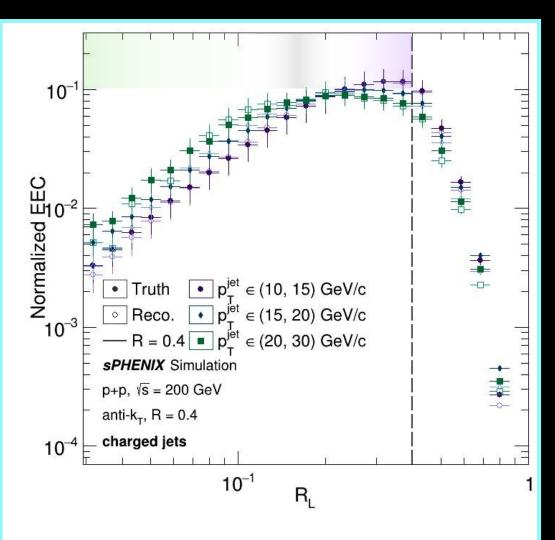

Derek Anderson (ISU), 2023 CFNS Energy Flow Workshop

12/21

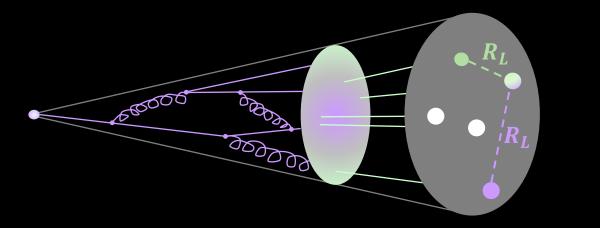
Analysis (p+p) | EEC in p+p

- EEC calculated in jets with $p_T^{jet} \in (10, 30)$ GeV/c down to $R_L \sim 0.03$
 - Aiming to push to lower R_L as tracking becomes better understood
 - Note: bars are variance of distribution for each R_L bin
- Closed markers: EEC from truth jets
 Open markers: EEC from reco. jets





Analysis (p+p) | EEC in p+p


- $\circ~$ Distributions normalized to unity to compare shape
 - Shading at top of plot roughly indicates
 perturbative & free streaming regions
 - Dashed line indicates R = 0.4
- \circ With increasing p_T^{jet} :
 - Transition region broadens
 - And peak of transition happens at lower $R_L!$

Analysis (p+p) | Truth vs. Reco. EEC

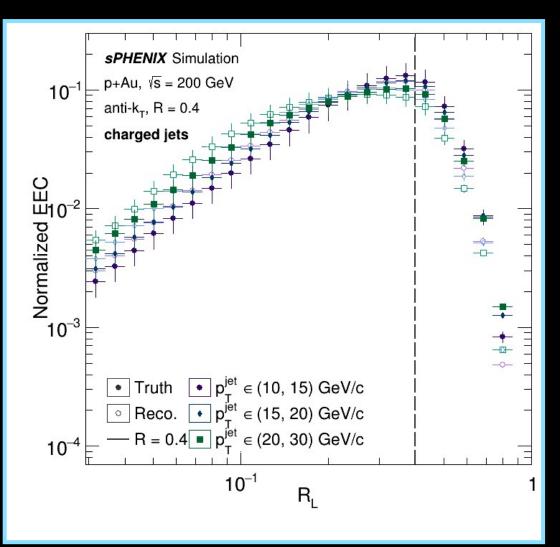
- \circ **Right:** truth vs. reco. EEC for 20 30 GeV/c jets
 - Reco. jets include all detector effects (e.g. tracking efficiency) and pileup
- Differences between truth and reco. small
 ⇒ Corrections should be easily controllable!

Analysis (p+Au) | Simulation Setup

p+Au Simulation

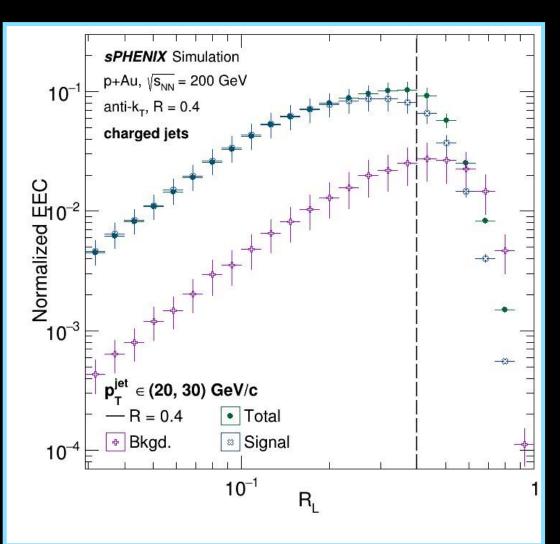
- PYTHIA-8, $\hat{p}_T > 7$ GeV/c
- Embedded into p+Au HIJING (b = 0 10 fm)
- Simulated 50 kHz MHz of pileup p+Au collisions
- 14M events analyzed

Jet Definition


- Anti- k_T algo., p_T -recomb. scheme
- R = 0.4
- $|\eta^{jet}| < 0.7$

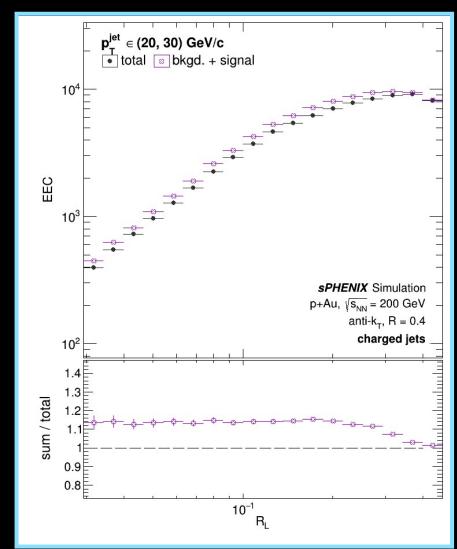
- p+Au collisions simulated by embedding PYTHIA-8 into p+Au HIJING
 - HIJING: Wang, Gyulassey; PRD 44, 3501 (1991)
- Jets reconstructed with same parameters as in p+p
 - Looser track selection applied here than in p+p
 - Criteria still being optimized here and in p+p

Analysis (p+Au) | EEC in p+Au


- EEC calculated in min-bias p+Au for jets with same kinematic range as in p+p
- Larger differences between truth and reco EEC than in p+p!
 - Currently optimizing track selection to reduce this difference

Analysis (p+Au) | UE Contribution in p+Au

SPHENIX

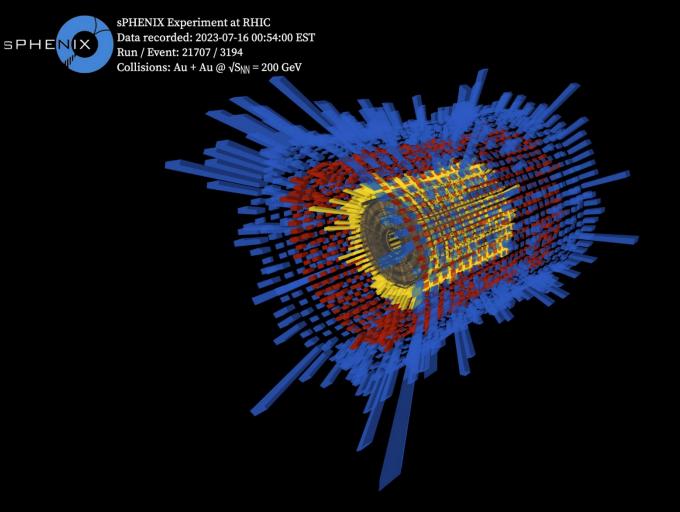

- Total EEC spectrum in p+Au consists of 3 classes of correlations:
 - signal-signal,
 - background-background,
 - and signal-background
- Right: EEC for 20 30 GeV/c truth jets in p+Au calculated for 3 different popultions
 - a) Signal: only PYTHIA-8
 - **b) Background:** only p+Au HIJING
 - c) Total: entire PYTHIA-8 + HIJING event
- Note shapes: background EEC largely follow free-streaming scaling behavior
 - Background & signal normalized relative to total

Analysis (p+Au) | Signal-Background Correlations

- \circ $\,$ To gauge size of signal-background correlations:
 - Compare sum of signal & background EEC spectra to total
 - No signal-background correlations → total would be sum of signal and background
- Right: sum of signal, background EEC spectra (purple) vs. total (black) for 20 – 30 GeV/c jets
 - Total differs by no more than 20%
 - But shape is clearly different!
- Notes:
 - R_l only shown from 0.03 to 0.4
 - bars on points are statistical errors (largely obscured by markers)
 - EEC are **not** normalized here

Conclusion | Outlook

sPHENIX Time Projection Chamber 100 Hz ZDC, MBD Prescale: 2, HV: 4.45 kV GEM, 45 kV CM, X-ing Angle: 2 mrad 2023-06-23, Run 10931 - EBDC03 reference frame 43 Au+Au sqrt(s_{NN})=200 GeV



Towards Run 2024 and Beyond:

- RHIC valve-box incident ended Run 2023 early...
 - But sPHENIX made excellent progress in commissioning during run
 - More in Joe Osborne's talk (11/9 @ 3 pm)
- Well posed to complete commissioning and continue taking physics data in 2024!
 - ENC in high luminosity p+p dataset
 will be valuable as baseline &
 complement at RHIC & EIC!

Conclusion | Summary

In Summary:

- ENC may offer valuable insight into CNM effects
- Correlator & Energy Flow program at sPHENIX in early stages
 - Presented some initial feasibility studies in this talk
 - > Building understanding of expected detector effects & systematic uncertainties
- sPHENIX anticipates ability to measure well into free-streaming regime with wellcontrollable corrections

SPHERIX STATE U.S. DEPARTMENT OF ENERGY Office of Science

To faith a the section of the

Thanks!

Backup | Simulations, Jets, and Selection Criteria

o+p Simulation	Jet Definition	Cuts Applied to Tracks
 PYTHIA-8, $\hat{p}_T > 7$ GeV/c Simulated 3 MHz of pileup p+p collisions 3M events analyzed 	 Anti-k_T algo., p_T-recomb. scheme R = 0.4 η^{jet} < 0.7 Constituents: [True] FS charged MC particles 	$ - p_T^{trk} = 1 - 100 \text{ GeV/c} - \eta^{trk} < 1.1 - Quality (\chi^2/ndf) < 10 - N_{mvtx}^{layer} > 2 N_{mvtx}^{layer} > 1 $
o+Au Simulation	[Reco] tracks	$ - N_{intt}^{layer} > 1 - N_{tpc}^{layer} > 33 $
 PYTHIA-8, p̂_T > 7 GeV/c Embedded into p+Au HIJING (b = 0 - 10 fm) Simulated 50 kHz MHz of pileup p+Au collisions 3M events analyzed 	Cuts Applied to Particles $ - p_T^{par} > 0 \text{ GeV/c} - \eta^{par} < 1 - Is final state - Is charged $	- $ DCA_{xy} < 0.06 \text{ cm}$ - $ DCA_{z} < 0.20 \text{ cm}$ - $\delta p_{T}^{trk} / p_{T}^{trk} < 0.04^{1}$ 1. %-uncertainty on pt from ACTS fit

p

p

-

Backup | Corrections

- Corrections could be small, but they still need to be applied.
 - We are currently discussing strategies for unfolding/applying corrections
 - 2 potential options:
 - a) Traditional 2D unfolding
 - b) <u>Omnifold</u>
- a) 2D Unfolding:
 - Construct (p_T^{jet}, p_T^{cst}) response matrix and reconstruction efficiency for each bin of R_L
 - Unfold each 2D bin
- b) Omnifold:
 - Uses a ML model to "unfold" either multiple observables at once or the entire event
 - In the latter case, the correlator calculation would be rerun correlator analysis on unfolded event
- ∽ Might be beneficial to explore both going forward...

Backup | sPHENIX BUP 2022 vs. 2023

Table 1: Summary of the sPHENIX Beam Use Proposal for years 2023–2025, as requested in the charge. The values correspond to 24 cryo-week scenarios, while those in parentheses correspond to 28 cryo-week scenarios. The 10%-*str* values correspond to the modest streaming readout upgrade of the tracking detectors. Full details are provided in Chapter 2.

Table 1: Summary of the sPHENIX Beam Use Proposal for 2024 and 2025, as requested in the charge. The values separated by slashes correspond to different cryo-week scenarios (20/24/28 in 2024 and 24/28 in 2025). The 10%-*str* values correspond to the modest streaming readout upgrade of the tracking detectors. Full details are provided in Chapter 2.

Year	Species	$\sqrt{s_{NN}}$	Cryo	Physics	Rec. Lum.	Samp. Lum.
		[GeV]	Weeks	Weeks	z <10 cm	z <10 cm
2023	Au+Au	200	24 (28)	9 (13)	3.7 (5.7) nb ⁻¹	4.5 (6.9) nb ⁻¹
2024	$p^{\uparrow}p^{\uparrow}$	200	24 (28)	12 (16)	0.3 (0.4) pb ⁻¹ [5 kHz]	45 (62) pb ⁻¹
					4.5 (6.2) pb ⁻¹ [10%- <i>str</i>]	
2024	p^{\uparrow} +Au	200	-	5	0.003 pb ⁻¹ [5 kHz]	$0.11 \ {\rm pb^{-1}}$
					$0.01 \text{ pb}^{-1} [10\%\text{-}str]$	
2025	Au+Au	200	24 (28)	20.5 (24.5)	13 (15) nb ⁻¹	21 (25) nb ⁻¹

• **2022 vs. 2023 sPHENIX BUPs**

- 2023 BUP driven by required p+p/Au+Au luminosities for physics & completing commissioning
- <u>PAC supported sPHENIX request for sufficient p+p</u> <u>luminosity</u>

Species	$\sqrt{s_{NN}}$ [GeV]	Physics Weeks	Min. Bias Rec. Lum. $ z < 10 ext{ cm}$	Calo. Trigger Lum. $ z < 10 ext{ cm}$	
Run-2024	, Scenari	o A, 6 cryo-	weeks Au+Au + 20/24/28 cryo-w	veeks <i>p</i> + <i>p</i>	
Au+Au	200	n/a	n/a (Commissioning running)		
p+p	200	13/17/21	0.34/0.44/0.54 pb ⁻¹ [@ 5kHz] 2.3/3.1/3.9 pb ⁻¹ [10%-str]	23/31/39 pb ⁻¹	
Run-2024	, Scenari	o B, 20/24/2	28 cryo-weeks <i>p</i> + <i>p</i> + 6 cryo-week	as Au+Au	
<i>p</i> + <i>p</i>	200	9/13/17	0.23/0.34/0.44 pb ⁻¹ [@ 5kHz] 1.5/2.3/3.1 pb ⁻¹ [10%-str]	15/23/31 pb ⁻¹	
Au+Au	200	3	0.4 nb^{-1} (3B events)	not needed	
Run-2025	, 24/28 c	ryo-weeks			
Au+Au	200	20.5/24.5	$5.2/6.3 \text{ nb}^{-1}$ (35B/43B events)	not needed	