Spin Coordinator Update

RIKEN/RBRC Itaru Nakagawa On Behalf of sPHENIX Cold-QCD Group

1

Spin Tasks Present Status at a Glance

Item		Hardware/Firmware	Testing	Software	
SMD	North	 Module Installation √ Cabling √ Channel Mapping/Labeling √ 	 Run23 beam data ✓ Half of SMD OK ✓ Scope Check ✓ Cosmic rcdaq 	 Online monitor √ Offline asymmetry analysis 	
	South	 Module Installation ✓ Cabling ✓ Channel Mapping/Labeling ✓ 	 Scope Check ✓ Cosmic rcdaq 	code 🗸	
	Scaler	ADC digitizer/LL1/GL1p Firmware		LocalPol Online monitor to be developed using Run23 data	
Veto		 Power Supply Installation ✓ Cabling ✓ Differential Module ✓ Channel Mapping ✓ 	 Signal Check ✓ 	 Online monitor ✓ Offline analysis code ✓ Neutron cut optimization ✓ 	
Relative Luminosity		 GL1p firmware (version 1.0 by Joe) 	Testing by MartinTesting by Cold- QCD group.	Spin online monitor to be developed with test data	
Spin Pattern Recording				http-based delivery from CAD and saved in the spin database √ (Used to be broad casted via V124)	
Vernier Scan (1 st attempt of the scan at 2mrad crossing)		GL1p firmware		Analysis code development using PHENIX data?	

SMD Detectors Back in Operation

Local Polarimeter

Forward Neutron Asymmetry

Known to be ~5% Left-Right Asymmetry at 200 GeV

Preparation for Spin Experiment at sPEHNIX

- The last polarized p+p run in PHENIX was 2016.
- SMD was operated at least every other year.
- Readout electronics for ZDC/SMD/Veto used to be in 1008.
 - Restore SMD/Veto after 8 years. No guarantee they functions as they used to be due to aging and radiation damage.
 - Readout electronics for ZDC/SMD/Veto are new and in new location, 1008B.
 - All software have to be developed from scratch.
 - Operating condition needs to be optimized again.

1008B Building

ZDC/SMD Electronics are implemented in 1008B

10

Building 1008B

1008B

Run24 Spin Preparation

John Haggerty

Run24 Spin Preparation @ onsite

- Cheng-Wei Shih (NCU)
- Jaein Hwang (Korea U.)
- T. Kikuchi (Rikkyo/RIKEN)

R. Sidle (RIKEN) C. Riedl (UIUC)

- A. Vijayakumar (UIUC)
- G. Mattson (UIUC)
- V. Andrieux (UIUC)
- D. Neff (Saclay)
- A. Francisco (Saclay)
- M. Garcia (Michigan)

Local polarimeter scaler @ PHENIX

Scaler mode improves,

- \otimes Human resource. (during commissioning time, waiting for beam at CH)
 - Also offline analysis is slow operation
- $\ensuremath{\mathfrak{S}}$ Occupation of PHENIX DAQ band
 - During physics data taking, it is only 100-200 Hz

SMD Scaler Proposed Schematics for sPHENIX

The concept is to use existing calorimeter/MBD LL1 trigger scheme for SMD scalers so that only firmware to be developed and no hardware.

To be installed

2mrad Beam Opening Angle

Crossing Angle Effect for Spin

SMD Paddles

Segments : 8 Horizontal x 7 Vertical

SMD Paddles

Segments : 8 Horizontal x 7 Vertical

11.0cm

1.57cm

1.8 cm off centered neutron position is severe in terms of limited fiducial volume

Beam Angle Dependence of Horizontal Neutron Beam Center

ZDC was moved to 1.8cm toward outer side of the ring before Run24 so that zero degree neutron suppose to be landed at the center of ZDC

Beam Commissioning

1. Signal Timing

- 2. Online Monitors
- 3. Offline Local Polarimeter Analysis

ZDC/SMD Signal Cable Length Measurement

	Length [feet]	Length [m]	Transmission Time [ns]	Relative to ZDC	
ZDC	460	140	700	0	18
SMD.N	490	150	750	+50ns (+2.8)	J~
SMD.S	320	98	488	-212ns (-11.9)	

The cable length are different between ZDC vs. SMDN and SMDS. Observed signal timing are consistent with the cable length measurement.

ZDC/SMD/Veto Signal Timing w.r.t ADC Sampling range

ZDC/SMD/Veto Signal Timing w.r.t ADC Sampling range

Run#41262 (Latency=205)

24

Online Monitor

Work Done by

- M. Garcia, D. Loomis (Michigan)
- E. Umaka (BNL)
- V. Andrieux (UIUC)

ZdcMONDRAW_1 Run 44060, Time: Mon May 27 23:52:10 2024

WaveForm

SMD ADC Spectra

All channels are alive.

SMD Position Reconstruction

Reconstructed x,y profile of neutrons seems to be reasaonble

30

ZDC Energy Calibration

Spin Monitor

- Spin pattern seems to be consistent with what is observed in pC.
- GL1p scalers are necessary for relative luminosity
- Abort gap becomes less distinctive depending on trigger (ZDC single, rare triggers…)

Work done by D. Loomis

Offline Local Polarimeter Commissioning

Dedicated Runs for Local Pol Commissioning

Tirgger: ZDC North single and ZDC South single (not ZDC N&S coincident trigger)
Trigger Rate: Expected DAQ rate of ~10kHz without prescale.
Readout Subystems: Enable only ZDC/sEPD and GL1 nodes (remove all other detectors)
Duration : 1 hour (Goal is total of 36~50 Mevents at >10kHz)

Date	Fill#	Run#	Trigger	Partition	#Events	Polarization	
May 17, 7~9AM	21185	42796		ZDC+EMCal	17 M	20%	
	34403	42797	ZDCSIIN	ZDC	32 M	~30%	
May 18, 2 ~ 4AM	34492	42836	ZDCS N	ZDC	47 M	~40%	
		42861	ZDCS&N	ZDC	4.5 M		

STAR local polarimeter observed ~1% asymmetry @ 30% polarization

Blue

Courtesy of Kin&STAR to provide us their measurement

Ongoing Independent Analyses

	Run15/Run8	Greg	Devon	Jaein	Athira
ZDC (Eujiro)	ADC _{ZDC2} /ADC _{sum} >0.03	$\begin{array}{c} \text{ADC}_{\text{ZDC1}} > 100 \text{ \&} \\ \text{ADC}_{\text{ZDC2}} > 15 \end{array}$	ADC _{ZDC1} >100 & ADC _{ZDC2} >15	$\begin{array}{c} \text{ADC}_{\text{ZDC1}} > 100 \text{ \&} \\ \text{ADC}_{\text{ZDC2}} > 15 \end{array}$	
SMD ADC	$ADC_{SMD} > 3 MeV$	$ADC_{SMD} > 5$	$\text{ADC}_{\text{SMD}} > 50$	$ADC_{SMD} > 5$	
SMD hit paddles	n _x >1 & n _y >1	$n_x > 1 \& n_y > 1$	$n_x > 1 \& n_y > 1$	$n_x > 1 \& n_y > 1$	
Charge Veto Volunteer?	$ADC_{veto} < 50 (1/2 MIP)$	$ADC_{veto} < 150$	ADC _{veto} <150	$ADC_{veto} < 150$	
ZDC Energy	40-120 GeV				
SMD radial position	0.5< r <4.0cm	2.0< r <4.0cm	2.0< r <4.0cm		
SMD Gain Matching	$[0]e^{-[1]x} + [2]e^{-[3]x}$		Deven's ana*		

*Same method w/ Run15

First pass calibration and cut optimization are nearly completed by now.

Person in charge to optimize cut

DST for Offline Analysis

Asymmetry Results

Analyzer 1

Analyzer 2

Either zero consistent or smaller asymmetry than STAR observed one. Cross checking between different analyzers are currently ongoing.

Summary

- SMD/Veto, GL1p scalers have been setup for the Spin program in Run24.
- Optimization of the operation conditions (HV, threshold, timing, etc) has been completed by now.
- GL1p scalers are to be debugged for Vanier scan.
- Offline local polarimeter commissioning is underway. So far, no firm evidence of the asymmetry observation at sPHENIX yet.
- Production time needs to be speeded up for dynamic feedback to MCR

Backup Slides

SMD Patch Panels

North SMD

South SMD

SMD Signal Cable Mapping

	North			South				
SLAT	Patch Channel	RG58 Cable Label	Model 776 Input	SLAT	Patch Channel	RG58 Cable Label	Model 776 Input	
H1		1 1	1	H1	1	1	1	
H2		2 17	2	H2	2	2	2	
Н3		3 3	3	Н3	3	3	3	
H4		4 18	4	H4	4	4	4	
H5		5 5	5	H5	5	5	5	
H6		6 4	6	Н6	6	6	6	
H7		7 7	7	Н7	7	7	7	
H8		8 20	8	H8	8	8	8	
V1		9 9	9	V1	9	9	9	
V2	1	.0 10	10	V2	10	10	10	
V3	1	.1 11	11	V3	11	11	11	
V4	1	2 12	12	V4	12	12	12	
V5	1	.3 13	13	V5	13	13	13	
V6	1	4 19	14	V6	14	14	14	
V7	1	.5 15	15	V7	15	15	15	
SUM	1	.6 16	16	SUM	16	18	16	
							44	

SMD Diff. Module - HardMetric Connector Channel Map

	Neverse Configuration								ADC I	nput En	d Connector Front View
	Differential Module Front Panel Channel*				Differential Module Front Panel Channel* Silver						Silver plate
	1/	V5	15	V6		14	H4	-	15	H3	H4
1 1 13	12	V3 \/7	13	V U		12	H2	-	13	H1	
	10	V7 \/1	11	2 \/2		10	H8	-	11	H7	
	20	V1	0	VZ		08	H6	-	09	H5	V5
E C	6	ν5	5	V4 Н6	,	06	V4	-	07	V3	
100	0		7	ПО		04	V2	-	05	V1	
	4		່ງ ວ			02	Σ		03	\/7	
ALTER OF	2	HI	3	H2		02	2	-	03		
	0	H3	1	Η4		00	V6	-	01	V5	

*The limo input cables are not in order of H1->V Σ at the differential module front panel, but they are in the order at the ADC input ⁴⁵

ADC Module Input Channel Map

ADC Input Pin Assignment								
14	-	15						
12	-	13						
10	-	11						
8	-	9						
6	-	7						
4	-	5						
2	-	3						
0	_	1						

See details in Devon's documentation

Fill #34485.102 (pC Blue)

Beam Center Position Test

- 1. Reconstruct x,y position distribution for selected neutron events only.
- 2. Take mean values for both x and y as the neutron beam center (x_{mean}, y_{mean}) .
- 3. Recalculate asymmetry based on (x_{mean}, y_{mean})
- Also calculate asymmetry assuming following beam centers (-2,0), (-1,0), (+1,0), (+2,0).

Beam Center Position Test in Run8, 15

5.11.4 Beam position

The uncertainty from the beam center ambiguity is estimated by varying the assumed beam center position ± 10 mm in x and ± 5 mm in y direction. The position survey results give a few mm deviation between the zero degree line and the ZDC center. However, for the x-direction, we assigned conservative uncertainty as 10 mm of deviation because 1 cm difference explains the different asymmetric background fraction between Run8 and Run15.

2cm shift in x-position makes > 0.5% effect in the asymmetry.

49