

30 Hipot ("Hypot") and impulse testing pose an electrical hazard. At least two properly trained technicians must be present to perform this testing. When testing, a trained technician shall be stationed at any point where the item under test is accessible to unauthorized people, and barriers shall be set up. Signs shall be posted reading "DANGER HIGH VOLTAGE" and warning lights shall be turned on.

1

-

Superconducting Magnet Division

sPhenix Solenoid Low Power pre-Test Inspection

MDC No. sPhenix-030 Rev: A Page 2 of 12 Rev Date: 11/04/2015 Author: M. Anerella Approved: 12/03/2015

OP	Description	Name/Life #	Date	DR
40	The technician is responsible for notifying the technical supervisor and/or the cognizant engineer of any discrepancies occurring during the performance of this procedure. All discrepancies shall be identified and reported in accordance with SMD-MAG-1003.	•	0	
	Measuring and test equipment used for this procedure shall contain a valid calibration label in accordance with the SBMS Subject Area 'Calibration', where applicable.			
50	Technicians performing Pressure Testing shall be instructed in the procedures prescribed by the SBMS Subject Areas by the Cognizant Engineer or Technical Supervisor:			
	 Compressed Gas Cylinders and Related Systems Pressure Safety Cryogenics Safety 			
	All relief devices and gauges used for pressure tests shall meet the requirements of the SBMS Subject Area. Examine all pressure test equipment before pressure is applied to ensure it is tightly connected.			
	Suitable precautions shall be taken during pressure testing to eliminate hazards to personnel in the proximity of the test in the event of a rupture. The area shall be roped off.			
60	All work performed herein shall be done in a manner compliant with the document "Work Plan for S-Phenix Magnet". All work which has not been categorized as 'worker planned work' shall require an approved work permit.			

OPDescriptionName/Life #DateDR70Open fittings 3 places each end on cryostat end flange and
4 places on cryostat o.d. each end loosen coil support tie
rods per P. Kovach instructions. See below & op 72Image: Construction of the second s

BaBar SOLENOID SUPPORT ROD TIGHTENING FOR SHIPMENT TO ITALY

Wes Craddock/SLAC

END	POSITION	POINTING	TURNS	D _{before}	D _{after}	ΔD
BACK	Lower Left	Down	3	31.51	27.22	4.29
BACK	Upper Left	Down	4 1/3	35.5	29.98	<mark>5.5</mark> 2
BACK	Lower Right	Down	3	31.7	27.57	4.13
BACK	Upper Right	Down	3	33.07	29.13	3.94
FRONT	Lower Left	Down	3	32.47	28.7	3.77
FRONT	Upper Left	Down	3	34.18	30.02	4.16
FRONT	Lower Right	Down	3	30.95	26.77	4.18
FRONT	Upper Right	Down	3	34.62	30.69	3.93
average				33		

RADIAL / VERTICAL SUPPORT RODS

BACK END AXIAL SUPPORT RODS

POSITION	TURNS
3 o'clock	3 1/4
7 o'clock	3 3/4
11 o'clock	3 3/4

NOTES:

- 1) Back end is the solenoid chimney end or the ANSALDO designation LU
- 2) For radial arms, distance D is from the top nut to the aluminum pipe end
- 3) For the radial arms, the back upper left arm required 4 1/3 turns. It was apparently mistightened at the factory. It should be loosened three turns, just like all the others.

4) All the radial arms pointing up had weight on them. They were not touched.

5) Only the back end axial rods were tightened. They were tightened by turning the large spherical nut by hand. Tightening proceed by taking out the axial rod spring travel with the three point jack until resistance rapidly increased.

6) Tightening the back end axial rods also tightens the front end axial rods.

Superconducting Magnet Division

sPhenix Solenoid Low Power pre-Test Inspection

MDC No. sPhenix-030 Rev: A Page 4 of 12 Rev Date: 11/04/2015 Author: M. Anerella Approved: 12/03/2015

De	scription			Name/Life #	Date	DR
2						
ř		1		1		Ĩ
			Measured	Original Distance		
END	LVDT Port #	LVDT Port	Distance	Labeled on Shell		1
		Angle (O'Clock)	(inch)	(inch)		
Back	2 (B East)	8	6.804	6.801		
Back	B West	4	6.69	6.607		8
		AVG. VALUE	6.747	6.704		
Front	4	7	3.381	2.213 *		<u>с</u>
Front	A	12	3.344	3.424		-
Front	С	3	3.315	2.157 *		
		AVG. VALUE	3.347	3.424		0
	AV	G. DIFFERENCE	3.400	3.280		0
There is a 3.35	" difference between forw	vard and backward er	nds			
Measured o	distance is from vacu	um face to cryos	tat face			
Coil offset 3	3.2 cm in the forward	direction				
* is probably a	crvostat to shield dimens	ion : We measured f	irst measured valu	les of ~2.5" which turi	ned out to be depth to	shield
						8
The coil windir	ngs are displaced 2.5 cm w	rithin the winding bok	obin.			~
Vacuum Shell I	Length = 3849.5 mm					
Winding length	h = 3512 mm					
Winding Mand	lrel to Vacuum Shell (outsi	de) = 89 mm (3.5") o	on the forward en	d and 171 mm (6.73'	') on the backward en	d
Winding Mand	drel displaced 171 -89 = 82	mm inside the vacuu	um shell towards t	he forward end		0
Coil is displace	d 25 mm towards the bac	kwards end within th	e winding mandre	1		
Thus coil is dis	placed 82 - 25 = 57 mm to	wards the forward er	nd.			
References say	y it should be ~ 32 mm					

75 Confirm calibrations have been completed on linear potentiometer position sensors. Attach calibration information to the traveler. Install 2 position senors at each end of the magnet.

MDC No. sPhenix-030 Rev: A Page 5 of 12 Rev Date: 11/04/2015 Author: M. Anerella Approved: 12/03/2015

OP	Description	Name/Life #	Date	DR
80	Cognizant Engineer initial complete		~	
140	Set power supply to 25 VDC maximum and apply 1 amp to coil. Measure and record voltage drops and record in Table 1			
150	Measure overall resistance, coil inductance and quality factor. Perform tests at three frequencies, 20Hz, 60Hz and 1KHz. Record data below:			
	Temp:			
	R://			
	L://			
	Q:///			
160	Prepare coil for hypot & impulse testing:			
	1. Verify (3) blank-off flanges at LE & (3) blank-off flanges at NLE are installed			
	2. Connect mechanical vacuum pump to the feedthrough			
	7. Start pump. Continue pumping down until an absolute pressure of <50 millitorr is reached in the vacuum space			

MDC No. sPhenix-030 Rev: A Page 6 of 12 Rev Date: 11/04/2015 Author: M. Anerella Approved: 12/03/2015

OP	Description	Name/Life #	Date	DR
170	Perform 520V hypot test of coil - leakage shall be <50uA :			
	CAUTION: BE SURE THE "HYPOT" IS GROUNDED AND			
	FAILURE TO OBSERVE THIS CONDITION MAY RESULT IN ELECTROCUTION.		O	
	CAUTION: VACUUM SPACE MUST BE UNDER VACUUM (<50 millitorr ABS) DURING THIS TEST.			
	Perform hypot. Slowly increase voltage to 520V.	U		
	Record leakage current (<50uA):			
180	Perform impulse test of coil at 400V. Record waveform data file.	7		
	CAUTION: VACUUM SPACE MUST BE UNDER VACUUM (<50 millitorr ABS) DURING THIS TEST.			
190	Cognizant Electrical Engineer to sign-off results "OK to proceed".			
	Cognizant Electrical Engineer:			
195	Release vacuum			

OP	Description	Name/Life #	Date	DR
200	Pressure Leak Check:			
	CAUTION: Move all personnel away from the magnet and the connections to the helium bottle.			
	NOTE 1: The magnet has a common helium circuit for the coil cooling, heat shield, buffer volume and power leads and a single vacuum jacket.		9	
	NOTE 2: Vacuum leak testing shall be performed using a helium mass spectrometer leak detector with a sensitivity> 1x10-9 std. cc. he./sec.	J.C.		
	NOTE 3: Pressure tests need to be witnessed by an ES&H Representative			
205	Installation of Cryostat Relief Valve:	· · · · · · · · · · · · · · · · · · ·		
	1) At lead end of cryostat, remove blank-off flange as shown in illustration below and discard hardware.			
	2) Install Cryostat Relief Valve IAW SMD Drawing 25- 2043020			

210 Connect the helium circuit to a helium bottle with a flex hose capable of 81PSIG through a regulator and gauge.

1	

MDC No. sPhenix-030 Rev: A Page 8 of 12 Rev Date: 11/04/2015 Author: M. Anerella Approved: 12/03/2015

OP	Description	Name/Life #	Date	DR
220	Connect the vacuum pump line to the magnet vacuum space and start the mechanical pump. At 60 microns (60 x 10-3 Torr) start the turbo pump and valve it into the test			
	loop. Close valve to the mechanical pump and turn off.		0	
230	Calibrate the leak detector.			
240	Allow to pump down to approximately 10 microns before leak check is started.	N		
270	Shut down the helium supply. Bleed the helium pressure from the circuit using a method compliant with Building 912 requirements.			
290	Pressurize the helium circuit with helium gas to 81PSIG as read at the helium bottle regulator. This equates to a 6.6 bar differential between the circuit under test and the vacuum			
	operating pressure.			
300	Monitor the leak detector for a minimum of 10 minutes. The		[]	[]
	maximum acceptable leak rate at test pressure is 1x10-8 std. cc. he./sec.			
	NOTE: The maximum helium leak rate for any part of the solenoid system not enclosed within the vacuum vessel, e.g. instrumentation feed-throughs, shall not exceed 1x10-6 std. cc. he./sec			
	Leak Rate Helium Circuit:			
7	Witness - ES&H Rep:			
310	Shut down the helium supply. Bleed the helium pressure from the helium circuit using a method compliant with			

MDC No. sPhenix-030 Rev: A Page 9 of 12 Rev Date: 11/04/2015 Author: M. Anerella Approved: 12/03/2015

OP	Description	Name/Life #	Date	DR
310	Verify All Traveler Operations Complete			
001	Povision History	+	O [×]	
991	Rev. A: Initial Release 11/9/15			
	03			

Superconducting Magnet Division

sPhenix Solenoid Low Power pre-Test Inspection

MDC No. sPhenix-030 Rev: A Page 10 of 12 Rev Date: 11/04/2015 Author: M. Anerella Approved: 12/03/2015

 MDC No. sPhenix-030
 Rev: A

 Page 11 of 12
 Rev Date:
 11/04/2015

 Author:
 M. Anerella
 Approved:
 12/03/2015

OP	Description	Name/Life #	Date	DR
1010				
	🖘 Babar Magnet – Instrumer	tation Lead Inventory - Table 2		
	Lead ID	Description		
	As rec'd(v)	Description	_	
	VT01			
	VT02			
	VT03	w		
	VT04	n ¹		
	VT05	o ^{ra} `, o ^r		
	VT06	0125 170°		
	VT07			
	VT08	- utilitano		
	VT09	- N. still		
	VT10	- see crite		
	VT11	- Dest		
	VT12	▼		
	VT13			
	VT14			
	VT15			
	VT16			
	VT17			
	Add ID's 👃			
	2		2	
	2			
		Continued on next page		
	LI			