
ATLAS NOTE
ATLAS-INT-2017-XXX

March 19, 2018
Draft version 0.84

1

FELIX User Manual2

ATLAS FELIX Group3

© 2018 CERN for the benefit of the ATLAS Collaboration.
Reproduction of this article or parts of it is allowed as specified in the CC-BY-3.0 license.4



Contents5

1 Overview 76

1.1 Document Compatibility 77

2 Introduction to FELIX 88

2.1 FELIX Variants and Functionality 89

2.1.1 Gigabit Transceiver (GBT) and the Versatile Link 810

2.1.2 FULL Mode 811

2.1.3 Propagation of ATLAS TTC Information 912

3 Hardware Requirements and Setup 1013

3.1 Recommended Hardware Platforms 1014

3.1.1 FPGA I/O Hardware: VC-709 1015

3.1.2 FPGA I/O Hardware: BNL-711 1016

3.1.3 FELIX Host Systems 1017

3.2 Installation of VC-709 1118

3.3 Installation of BNL-711 1119

3.4 Connecting to an existing TTC system 1220

3.4.1 VC-709 Only: TTCfxV3 Overview and Installation 1221

3.4.2 Connecting TTC and BUSY 1222

3.5 Configuring FELIX Clock 1323

3.5.1 Clock Source Selection 1324

3.5.2 TTC Clock Recovery: ADN2814 1425

3.5.3 Clock Jitter Cleaning 1426

3.6 Connecting and Initialising Optical Links 1527

3.6.1 Physical Link Layer Status: VC-709 1528

3.6.2 Physical Link Layer Status: BNL-711 1529

3.6.3 Logical Link Layer Initialisation 1630

4 Firmware Releases and Programming 1731

4.1 Firmware Distribution Protocol 1732

4.1.1 Release Announcements 1733

4.1.2 Firmware Distribution Site 1734

4.2 Firmware Programming 1735

4.2.1 JTAG Connectivity 1736

4.2.2 Setting up the Vivado™Suite 1837

4.2.3 Programming the FPGA Directly 1938

4.2.4 Programming the FLASH ROM (VC-709) 2139

4.2.5 Programming the FLASH ROM (BNL-711) 2140

4.2.6 Enabling new FPGA Configuration 2441

4.2.6.1 PCIe hotplug procedure 2442

5 Software Distribution and Installation 2543

5.1 Software Distribution Protocol 2544

5.1.1 Pre-requisites 2545

5.1.2 Release Announcements 2546

2



DRAFT

5.1.3 Release Distribution Site 2547

5.1.3.1 FELIX Driver 2548

5.1.3.2 FELIX Software Suite 2549

5.2 Software Installation Instructions 2650

5.2.1 Driver RPM Installation Instructions 2651

5.2.1.1 DKMS 2652

5.2.1.2 Removal of Existing Driver Installations 2653

5.2.1.3 Installation of New Driver 2654

5.2.2 Installation of FELIX Software Suite 2755

6 Basic Tools 2856

6.1 E-link Configuration with elinkconfig 2857

6.1.1 Global Panel 2858

6.1.1.1 Data Path Fan Out Selectors: TH_FO and FH_FO 3059

6.1.1.2 Data Timeout Control Dialog 3260

6.1.1.3 Clock Source Selector Dialog 3361

6.1.2 To-Host Panel 3362

6.1.3 From-Host Panel 3463

6.1.4 Link and Data Generator Configuration Upload Dialog 3564

6.1.5 Guide to Valid E-link Configurations 3565

6.1.6 Guide to common configuration tasks 3866

6.1.6.1 Working with E-link configurations stored in files 3867

6.1.6.2 Modifying the existing E-link configuration on a FELIX card without a68

file 3869

6.1.6.3 Configure L1AInfo E-links to host 3970

6.1.6.4 Configure TTC E-links from host 3971

6.1.6.5 Configure SCA E-links to/from host 4072

6.2 Low Level Tools (System Status Monitoring & Control) 4073

6.2.1 flx-info 4074

6.2.2 flx-config 4175

6.2.3 flx-init 4276

6.2.4 flx-reset 4277

6.2.5 flx-monitor 4378

6.3 Dataflow from Front-end via FELIX to FELIX host PC 4379

6.3.1 fdaq 4380

6.3.1.1 Running DAQ Test with External Data Source 4481

6.3.1.2 Running DAQ Test with Internal Data Generation 4582

6.4 Dataflow from FELIX Host PC to Front-end Systems via FELIX 4583

6.4.1 fupload 4584

6.5 FELIX Configuration Tools 4585

6.5.1 felink 4586

6.5.1.1 Finding E-link ID from GBT/E-group/E-path of GBT/Bit address/width 4687

6.5.2 fereverse 4788

6.5.3 fgpolar 4889

6.5.4 feconf 4990

6.5.5 femu 5091

6.5.6 feto 5092

March 19, 2018 – 14:45 3



DRAFT

6.5.7 fflash 5193

6.6 General Debugging Tools 5294

6.6.1 fcheck 5295

6.6.2 fedump 5296

6.6.3 fec 5297

6.6.4 fuptest 5398

6.6.5 fplayback 5399

6.7 Remote Hardware Command and Configuration Tools 54100

6.7.1 fic 54101

6.7.2 fgconf 55102

7 Felixcore Application and NetIO 57103

7.1 Operational Principles 57104

7.2 Configuration 57105

7.3 Monitoring 59106

7.3.1 FelixCore Native Monitoring 59107

7.3.2 Monitoring with felix-web-mon 59108

7.3.2.1 Compilation 59109

7.3.2.2 Usage 60110

7.4 FelixCore Examples 62111

7.4.1 Tests without an FLX Card 62112

7.4.2 Tests with an FLX Card 62113

7.5 Connecting to a felixcore instance using NetIO tools 63114

7.6 Connecting to a felixcore instance using FATCAT 63115

7.7 Discovering E-links with the FELIX BUS system 64116

7.8 Debugging 64117

7.8.1 Using the FelixCore event tracing framework 64118

8 Resources for Front-End Developers 66119

8.1 FELIX Firmware Modules for Front-end Users 66120

8.1.1 Downloading Firmware Source 66121

8.1.2 GBT Test Modules 66122

8.1.2.1 GBT-FPGA 66123

8.1.2.2 GBTx 66124

8.1.3 FULL Mode Test Modules 67125

8.1.3.1 Link Layer Tests 67126

8.1.3.2 Protocol Tests 67127

8.2 General Hints and Tips 67128

8.2.1 Known Technical Requirements for FELIX Communication 67129

8.2.2 Examples of Design Best Practice based on Current Experience 67130

8.2.3 Frequently Asked Questions 69131

Appendices 70132

A Setting up a TTC System for use with FELIX 71133

A.1 Tuning a TTC system 73134

March 19, 2018 – 14:45 4



DRAFT

A.2 Guide to TTC Channel B 75135

A.2.1 B channel decoding firmware 77136

A.2.2 Channel B decoding software 77137

A.3 Useful documents 77138

B BNL-711 Technical Information 78139

B.1 User Jumper Map and Functional Specification 78140

B.1.1 J1 79141

B.1.2 J2 79142

B.1.3 J8 79143

B.1.4 JMP1 79144

B.2 JMP2 80145

B.2.1 JMP3 80146

B.2.2 JMPR1 & JMPR2 80147

B.3 MiniPOD Connectivity Map 81148

C Guide to FELIX Data Structures 82149

D Guide to Using FELIX with GBT-SCA 84150

D.1 Introduction 84151

D.2 Typical test setup 84152

D.3 Operation to set up an SCA e-link 85153

D.4 Low level operations with fec tools to configure and establish basic communication 85154

D.5 The integrated production system – Introduction 86155

D.6 The SCA software (SCA-SW), its demonstrators and the OPC-UA SCA Server 88156

D.6.1 SCA-SW library 88157

D.6.2 SCA OPC-UA server 90158

D.7 References 91159

March 19, 2018 – 14:45 5



DRAFT

Revision History160

Revision Date Author(s) Description
0.84 19-03-2018 L. Levinson Clearer word-oriented format for L1AInfo, Figure 30.
0.83 06-03-2018 W. PanduroVazquez Fix TTC endianness (to little endian).
0.82 20-02-2018 L. Levinson Review of SCA documentation.
0.81 15-02-2018 W. PanduroVazquez Updates to TTC and BNL-711 appendices, fix broken link

to LAr user experience doc for TTC.
0.8 09-02-2018 W. PanduroVazquez Integrate flx-mon docs, TTC B-channel docs, updates to

software for new release.
0.71 22-11-2017 L. Levinson Correct GBT 8b/10b mode to “not implemented”.
0.7 11-11-2017 W. PanduroVazquez Add SCA and TTC appendices, general review
0.63 26-10-2017 J. Schumacher Add debugging instructions for FelixCore.
0.62 08-09-2017 L. Levinson Update TTC appendix.
0.61 08-09-2017 W. PanduroVazquez Implement review comments and update software de-

scriptions.
0.60 08-07-2017 W. PanduroVazquez Major update - material on BNL-711 and FULL mode,

rewrite of TTC and clock setup, update to ftools.
0.54 08-05-2017 J. Schumacher Add FelixBus chapter content.
0.53 26-07-2017 L. Levinson Added TTC item to section: Guide for Front end design-

ers.
0.52 26-07-2017 L. Levinson Added section: Guide for Front end designers.
0.51 06-04-2017 W. PanduroVazquez Update firmware distribution details, other minor fixes.
0.50 06-04-2017 J. Schumacher Add Felixcore chapter content.
0.40 28-02-2017 W. PanduroVazquez Overhaul release distribution information and contact in-

formation.
0.34 20-01-2017 W. PanduroVazquez Minor tweaks and bug fixes.
0.33 19-01-2017 W. PanduroVazquez Modify VC-709 USB programming instructions.
0.32 30-11-2016 L. Levinson Added details on the SMA cables for the TTCfx and on

the TTCvx connection.
0.31 28-11-2016 J. Vermeulen Small corrections, capitals in file names of figures now

consistent with actual filenames, typesetting under Linux
now OK

0.3 10-11-2016 W. PanduroVazquez Integrate TTC guide as an appendix, continue filling in
basic tools guide, expand and organise content of user
testing guide

0.2 09-11-2016 W. PanduroVazquez More detail to hardware guide, added firmware program-
ming guide

0.1 08-11-2016 W. PanduroVazquez Added driver and software guide
0.0 26-10-2016 W. PanduroVazquez created

March 19, 2018 – 14:45 6



DRAFT

1 Overview161

This document is intended to support all users of the Phase-I FELIX readout infrastructurewith installation,162

maintenance and operation of their system. The document covers all aspects of the FELIX system from163

recommended hardware to firmware and driver installation and maintenance. Finally the full suite of164

FELIX software will be presented, including useful test tools leading up to the primary ’FelixCore’165

dataflow application which is intended to form the backbone of all data taking sessions. For more166

information users should consult the following locations for updates:167

The FELIX users mailing list:168

atlas-tdaq-felix-users@cern.ch169

The FELIX Project Website:170

https://atlas-project-felix.web.cern.ch/atlas-project-felix171

The FELIX release distribution site:172

https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/dist/173

User support requests from users to the FELIX team should be made via the dedicated JIRA project:174

https://its.cern.ch/jira/projects/FLXUSERS175

Note: User support via SharePoint has been discontinued. Please report any broken links of obsolete176

material to help improve the overall quality of our documentation177

1.1 Document Compatibility178

This document is continuously evolving alongside FELIX firmware and software. The table below will179

keep track of the versions of each which should be considered covered by a given version of this manual.180

Manual Version GBT F/W Revision FULL Mode F/W Revision Software Release

0.8+ 5317+ 5327/5168 3.9.1

0.7 5317+ 5327/5168 3.8.1

0.61 5317 5327 3.8

0.6 5214 N/A 3.7

< 0.6 4400, 4500 N/A 3.4.2

March 19, 2018 – 14:45 7

mailto:atlas-tdaq-felix-users@cern.ch
https://atlas-project-felix.web.cern.ch/atlas-project-felix
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/dist/
https://its.cern.ch/jira/projects/FLXUSERS


DRAFT

2 Introduction to FELIX181

FELIX is a new detector readout component being developed as part of the ATLAS upgrade effort.182

FELIX is designed to act as a data router, receiving packets from detector front-end electronics and183

send it to programmable peers on a commodity high bandwidth network. Whereas previous detector184

readout implementations relied on diverse custom hardware platforms, the idea behind FELIX is to185

unify all readout across one well supported and flexible platform. Rather than the previous hardware186

implementations, detector data processing will instead be implemented in software hosted by commodity187

server systems subscribed to FELIX data. From a network perspective FELIX is designed to be flexible188

enough to support multiple technologies, including Ethernet and Infiniband. Given the general purpose189

nature of the FELIX effort, the system has also been adopted by several non-ATLAS projects. This190

document is therefore targetted at users both within and outside of the ATLAS upgrade effort.191

2.1 FELIX Variants and Functionality192

FELIX supports two different link protocols for the transfer of data to and from front-end peers. Each is193

supported by the same hardware platform, with separate firmware revisions both based on the same core194

modules.195

2.1.1 Gigabit Transceiver (GBT) and the Versatile Link196

The Gigabit Transceiver (GBT) chipset and associated technologies were developed as part of CERN’s197

Radiation Hard Optical Link Project [1]. The goal was to develop a radiation hard bi-directional link for198

use in LHC upgrade projects. GBT provides an interface an optical connectivity technology known as the199

Versatile link [2], which provides high bandwidth and radiation hard transport of data between GBT end200

points.201

The GBT transmission protocol is designed to aggregate multiple lower bandwidth links from front-end202

electronics components into one radiation hard high bandwidth data link (running at up to 5 Gb/s). The203

logical lower bandwidth links which make up a GBT link are known as E-links. The details of how E-links204

are supported within the FELIX project are discussed in Section 6.1.5 of this document.205

The GBT protocol has been implemented both in dedicated hardware (e.g. the GBTx chip [3]) as well as206

directly on FPGA platforms, the latter of which has been built on for use by the FELIX project [4].207

2.1.2 FULL Mode208

Within the context of the ATLAS upgrade (and subsequently externally) a requirement arose for a higher209

bandwidth data link from detector to FELIX than was possible with GBT, which has to support radiation210

hardness. These newer clients did not require radiation hardness, and were able to support a protocol211

which could be implemented in FPGAs on both sides of the link. The resulting development is known as212

’FULL mode’ [5], referring to full bandwidth.213

The FULL mode protocol is a implemented as a single wide data stream with no handshaking or logical214

substructure (i.e. no E-links). The reduced constraints mean that FULL mode links can operate at a line215

March 19, 2018 – 14:45 8



DRAFT

transmission rate of 9.6 Gb/s, which accounting for 8b10b encoding means a maximum user payload of216

7.68 Gb/s.217

Note that FULL mode in FELIX is currently only implemented in the from detector to FELIX direction,218

as there are currently no requirements for the to detector direction. FELIX FULL mode variants therefore219

implement to detector links with the GBT protocol, as this is sufficient for the required payloads.220

2.1.3 Propagation of ATLAS TTC Information221

As well as transferring data to and from front-ends, FELIX is also required to interface with the ATLAS222

Timing, Trigger and Control (TTC) system. FELIX must provide TTC information both to the front-ends223

at full granularity, and to network peers in a reduced form. The propagation of TTC information to the224

front-end is performed via dedicated E-links.225

March 19, 2018 – 14:45 9



DRAFT

3 Hardware Requirements and Setup226

3.1 Recommended Hardware Platforms227

3.1.1 FPGA I/O Hardware: VC-709228

The hardware platform recommended for FELIX operation in detector test stands is based on the Xilinx®
229

VC-709 Connectivity Kit [6]. This platform provides 4 optical transceivers compatible with both GBT230

and ’full mode’ operation as well as a Xilinx® Virtex®-7 series FPGA and 8-lane PCIe Gen 3.0 interface.231

The TTC interface for the system is provided by the TTCfx v3 FMC mezzanine card. An image of the232

VC-709 board and guide to features is presented in Figure 1.233

Figure 1: The VC-709 development board.

3.1.2 FPGA I/O Hardware: BNL-711234

The hardware platform currently under development for the final FELIX implementation in Phase-I is a235

custom interface board designed by BNL, known as the BNL-711. The BNL-711 hosts a Xilinx® Kintex®
236

UltraScale FPGA on a board capable of supporting 48 high speed optical links via MiniPOD transceivers,237

with a 16-lane PCIe Gen 3.0 interface. On-board clock jitter cleaning and TTC circuitry mean that no238

mezzanine attachment is required to connect with ATLAS clock and control systems. An image of the239

BNL-711 and its key features are presented in Figure 2. While the board is still under active development,240

prototype versions are available to detector test stands for commissioning and integration. Please contact241

the FELIX group for more information.242

3.1.3 FELIX Host Systems243

The current recommended hardware platform for a VC-709 FELIX system is based on the Supermicro®
244

X10SRA-F motherboard [7]. The system should be populated with at least 32 GB of DDR4 RAM and245

March 19, 2018 – 14:45 10



DRAFT

Figure 2: The BNL-711 V1.5 board.

an Intel® Xeon™ E5 family CPU (v3 or v4) with at least six real cores. Please see the motherboard246

manufacturer specification for more details.247

3.2 Installation of VC-709248

For full details regarding the VC-709 please consult the manual provided with your equipment. In terms249

of installing the card into a FELIX system please follow the following guidelines. The VC-709 should be250

installed into an 8-lane or 16-lane Gen 3 PCIe slot on the host motherboard, taking into account the need251

for clearance on all sides. The board must be connected to power from the system’s internal ATA power252

supply via a custom Molex adapter provided with the board. The power socket on the board is shown on253

the upper right hand corner of Figure 1, labelled ’12V Power’. Ensure that the power switch, just above254

the socket, is switched to the on position.255

The FPGA aboard the VC-709 is configured via an on-board JTAG programmer, which can be connected256

to a mini-USB cable with the ’USB JTAG Interface’ on the top left of Figure 1. A right angled mini-USB257

connector is recommended to minimise obstruction of the hosts case lid, although a straight cable is258

provided for free with your kit. Note that this has currently only been tested for USB2, which is the259

recommended interface. In order to be able to program the card please connect it to a convenient USB260

port on your host machine, or to another machine which you wish to use as a programming server. Finally,261

ensure that the link transceivers are safely inserted into the on-board cages.262

3.3 Installation of BNL-711263

The BNL-711 should be installed in a 16-lane Gen 3 PCIe slot on the host motherboard. The board264

must be connected to power from the system’s internal ATA power supply via an 8-pin Molex adapter (of265

the type commonly used for graphics cards). Note that the board does not support use of Xilinx power266

connectors.267

TheBNL-711 provides a JTAGconnector towhich programmers can be connected for FPGAconfiguration.268

The Digilent®HS2 programmer is recommended for this purpose. Aboard the BNL-711 are a series of269

jumpers to permit users to reconfigure various I/O properties of the board. For a full specification of these270

please consult Appendix B.271

March 19, 2018 – 14:45 11



DRAFT

3.4 Connecting to an existing TTC system272

This section is only relevant to users who wish to connect their FELIX system to a ATLAS TTC273

infrastructure. Other users should skip this section and proceed directly to clock configuration.274

3.4.1 VC-709 Only: TTCfxV3 Overview and Installation275

For VC-709 systems the TTCfx mezzanine card [8] is designed to connect your FELIX card to the ATLAS276

TTC system as used throughout Run 1-3 operations [9]. BNL-711 systems do not require this component277

as the same logic is implemented on the BNL-711 itself. The TTCfx is a small FMC mezzanine card,278

as shown in Figure 3, which can be attached to the VC-709 via the single FMC slot on-board (top left of279

Figure 1).280

Figure 3: Image of a TTCfxV3 card.

To complete the installation, you must then connect the P and N SMA GTH Reference Clock inputs on281

the VC-709 (middle bottom of Figure 1) to the SMA connectors on the TTCfxV3 (P to P and N to N) via282

suitable SMA cables 1.283

The TTCfx mezzanine card requires no specific firmware programming, and should work out of the box284

once connected to a TTC peer and a software configuration script is run. More detail is provided in the285

next section.286

3.4.2 Connecting TTC and BUSY287

This section assumes you are connecting a TTCvx-based system to FELIX. Notes on setting up such a288

system are available in Appendix A. Once set up, connect a TTC output from the TTCvx to the TTCfxV3289

using a Multi-Mode fibre with ST connectors. The connector on the TTCfxV3 end is visible in Figure 3,290

on the upper left hand side. On the BNL-711 the ST and LEMO connectors are located on the upper left291

part of the board, as shown in Figure 2.292

Finally, use a LEMO connector to connect the TTCfxV3 or BNL-711 to a destination for BUSY signals293

(as per your use case). The connector on the TTCfxV3 is visible in Figure 3 on the upper right hand side.294

The BUSY signal is the ATLAS standard open-collector BUSY signal, but with a weak 24Kohm pull-up295

to 1.8V to allow viewing on a ’scope.296

1 An example SMA cable is: http://eu.mouser.com/ProductDetail/Amphenol-RF/135103-01-0600/?qs=
sGAEpiMZZMufBZYvsU/be%2bYZgfjb/mihYZ4wKp9N4jE=. The right angle side goes on the VC-709, to make the cable
bending a bit more gentle. If you have space in your chassis, straight SMAs on both ends will do the job as well.

March 19, 2018 – 14:45 12

http://eu.mouser.com/ProductDetail/Amphenol-RF/135103-01-0600/?qs=sGAEpiMZZMufBZYvsU/be%2bYZgfjb/mihYZ4wKp9N4jE=
http://eu.mouser.com/ProductDetail/Amphenol-RF/135103-01-0600/?qs=sGAEpiMZZMufBZYvsU/be%2bYZgfjb/mihYZ4wKp9N4jE=


DRAFT

3.5 Configuring FELIX Clock297

This section assumes you have set up the FELIX software infrastructure as in Section 5. If you have not,298

then please do so before proceeding.299

3.5.1 Clock Source Selection300

FELIX requires a clock source in order to synchronise propagation of signals both within the FPGA301

and to external peers. The FELIX firmware supports the use of both a received clock from an external302

TTC source as well as an internally generated clock for users who don’t need or have access to a such a303

system.304

Note: older firmware revisions did not support this feature, so please ensure your version is labelled with305

CLKSELECT to ensure compatibility.306

To check your current clock selection, run the following command:307

$ flx-config get MMCM_MAIN_OSC_SEL308

A result of 0x1 indicates a system configured for TTC clock, while 0x0 indicates a local clock is in use.309

To change your clock selection run the following:310

$ flx-config set MMCM_MAIN_LCLK_FORCE=0xN311

For N = 0 or 1 as needed. It is also possible to select your clock source via the elinkcon f ig graphical312

tool. More information on this feature will be provided in Section 6.1.1.3.313

Another way to view the overall clock status by running via the FELIX info tool, or flx-info. This can314

be run with no command line parameters to dump summary information for your board as follows:315

$ flx-info316

Clock settings can then be viewed in the ’Clock Resources’ section, as shown in Figure 4.317

Figure 4: flx-info Clock Resources Output.

March 19, 2018 – 14:45 13



DRAFT

3.5.2 TTC Clock Recovery: ADN2814318

Should you wish to use a TTC clock source, you must next check that your FELIX board’s ADN2814319

clock recovery chip [10] is functioning correctly. Non-TTC users can skip this section.320

The overall status of your ADN2814 is reported in the Clock resources report from flx-info as show in321

Figure 4. For more detail on the chip’s status, run with the following extra parameter:322

$ flx-info ADN2814323

If your chip is functioning correctly, and you have a TTC system connected, you should see output324

matching Figure 5.325

Figure 5: flx-info ADN2814 status output.

If the output differs (e.g. if you see a loss of lock reported) please check your connections before resetting326

the ADN2814 using the following:327

$ flx-reset ADN2814328

3.5.3 Clock Jitter Cleaning329

Whether you are using an internal or external clock, the signal must be cleaned to minimise jitter and330

ensure stable performance. FELIX uses one of two dedicated chips for jitter cleaning depending on your331

clock source and hardware.332

TTC clocks should be cleaned by the Si5345 chip [11], which is hosted by the TTCfxV3 for VC-709333

systems as well as on-board the BNL-711. Non-TTC clocks can also be cleaned by the Si5345, but for334

those who don’t have a TTCfxV3 the VC-709 also hosts a different cleaning chip, the Si5324 [12], which335

offers sufficient jitter correction for the non-TTC case.336

Note: the Si5324 is currently only supported with a dedicated firmware build for those wishing to connect337

optical links to FELIX using the FULL mode protocol. Users of GBT must have a Si5345-based system.338

Should you wish to use the Si5324 please make sure to check the filename of the firmware tarball provided339

on the FELIX firmware distribution site to ensure the name of the cleaner is present.340

Whichever your use case, your FELIX card must be configured to the correct jitter cleaner in order to341

function correctly. This can be achieved using the flx-init command line application as follows342

$ flx-init -T <N>343

For Si5324 use N = 1, for Si5345 use N = 2.344

Note: you will have to redo this jitter cleaner initialisation step each time you change FELIX clock source345

to maintain normal operation.346

To check the status of your jitter cleaner, use the following command:347

March 19, 2018 – 14:45 14



DRAFT

$ flx-info <cleaner name>348

3.6 Connecting and Initialising Optical Links349

Assuming you have set up your FELIX clocks specified above for your use case, set up the FELIX software350

environment as described in Section 5 and programmed the FPGA aboard your VC-709 or BNL-711 as351

described in Section 4 you are now nearly ready to attempt to connect the system to a peer via optical link352

using either GBT or FULL mode protocols.353

The first step to bringing up your links is to connect your fibres to the transceivers aboard the VC-709 or354

BNL-711, ensuring not to place excessive strain on them. Once the connectors are properly seated, you355

can check the physical status of your links.356

3.6.1 Physical Link Layer Status: VC-709357

In order to check the status of your physical connections for a VC-709 (which are SFP based) run the358

following:359

$ flx-info SFP360

Look for the lines marked ’Link Status’ in the output as per Figure 6361

Figure 6: flx-info VC-709 SFP physical status output.

3.6.2 Physical Link Layer Status: BNL-711362

In order to check the status of your physical connections for a BNL-711 (which are MiniPOD based) run363

the following:364

$ flx-monitor POD365

There will be many lines of output, but you should check the section labelled ’MiniPODs’ as shown in366

Figure 7.367

If your physical link is working correctly you should see loss of latch status ’N’ for the relevant MiniPOD,368

where 814 corresponds to Tx and 824 to Rx PODs respectively. For a physical map of MiniPOD locations369

please consult Appendix B.370

March 19, 2018 – 14:45 15



DRAFT

Figure 7: flx-monitor BNL-711 MiniPOD physical status output.

3.6.3 Logical Link Layer Initialisation371

Once you have established a successful physical connection, the next step depends on your choice of372

logical protocol. If you are connecting with the FULL mode protocol your logical links should then come373

up immediately. You should therefore be ready to attempt to transfer data to FELIX.374

If you are connectingwithGBTyouwill need to train the links to bring themup by running the following:375

$ flx-init376

This should run reporting no errors. You can then print the status of your GBT links with:377

$ flx-info GBT378

The results should match Figure 8.379

Figure 8: flx-info GBT status output (VC-709 version, a BNL-711 can have up to 24 channels displayed).

If this looks correct your GBT links should now be fully operational. Before attempting to transfer380

GBT data please ensure you have followed the guide in Section 6.1 for details on how to configure your381

E-links.382

March 19, 2018 – 14:45 16



DRAFT

4 Firmware Releases and Programming383

4.1 Firmware Distribution Protocol384

4.1.1 Release Announcements385

FELIX firmware (and software) releases will be announced on the following e-group:386

atlas-tdaq-felix-users@cern.ch387

Please subscribe to this group to stay up to date with the latest updates. All new releases will include a388

detailed change list and reference to the associated version of this user manual.389

4.1.2 Firmware Distribution Site390

Tarballs of firmware releases (containing both .bit and .mcs files) are made available via a dedicate web391

page:392

https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/dist/393

firmware394

Versioning information is available in the on-site ’bitfiles_change_log.md’, please download the latest395

version as indicated.396

Note: all recent firmware revisions are labelled ’CLKSELECT’ to indicate that they support both dual397

TTC and local clock sources. Older revisions were dedicated to one clock or another, but these should398

now be considered deprecated. Please upgrade to a newer revision if you have such a version.399

4.2 Firmware Programming400

The FPGAs aboard both the VC-709 and BNL can be programmed directly via a JTAG interface using the401

Vivado™ software suite [13]. For the VC-709 this method also makes possible to program the on-board402

FLASH ROM. A configuration programmed into the FPGA directly will be lost if the machine is switched403

off, whereas a configuration programmed in the FLASH will persist. This will make it possible to retain404

the desired programming state of the card e.g. if transported. This section will describe how to program405

the card using all available methods.406

4.2.1 JTAG Connectivity407

The VC-709 comes with an on-board JTAG programmer, accessible via USB, as described in Section 3.408

The BNL-711 does not have an on-board programmer, and as such you will need to acquire a USB-409

accessible programmer. The FELIX developers recommend the Digilent®HS2 for this purpose.410

March 19, 2018 – 14:45 17

atlas-tdaq-felix-users@cern.ch
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/dist/firmware
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/dist/firmware
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/dist/firmware


DRAFT

4.2.2 Setting up the Vivado™ Suite411

Specific installation instructions for the Vivado™ suite are provided with your development kit. Note that412

the instructions in this section are compatible with the 2014, 2015 and 2016 releases of the suite. We413

recommend you install the software locally on the PC you wish to use as your programming server. This414

should be connected to your VC-709 in your FELIX host via USB as described in Section 3.2. When you415

first connect your system via USB you will need to run a Xilinx® setup script to configure the bus properly416

(path may vary depending on product year):417

$ source Xilinx/Vivado/2016.4/data/xicom/cable_drivers/lin64/digilent/install_digilent.sh418

The Vivado™ environment can be started with the following commands:419

$ source Xilinx/Vivado/2016.4/settings64.sh420

$ vivado &421

You will then be presented with the Vivado™ splash screen, where you should select ’Open Hardware422

Manager’ as shown in the red box in Figure 9.423

Figure 9: Vivado™ Splash Screen.

From the hardware manager select ’Open Target’ on the top left as shown in Figure 10 and choose ’Open424

New Target’.425

From this point, select ’Next’ on the following screen and ’Connect to Local Server’ after that, once again426

press ’Next’. This should bring you to the hardware list. On this screen select the FPGA on your VC-709427

or BNL-711 from the uppermost list (if you have only one board there should be only one entry, if not,428

March 19, 2018 – 14:45 18



DRAFT

Figure 10: Vivado™ Hardware Manager.

find yours in the list by name). The screen you will see is shown in Figure 11. Once you have found your429

FPGA and selected it press ’Next’ on the bottom right and ’Finish’ on the following screen.430

Figure 11: Vivado™ Target Selector with VC-709’s Virtex7 FPGA selected, as indicated by red arrow (FPGA ID
will vary from model to model). The BNL-711’s Kintex Ultrascale FPGA will appear as xkcu1150

From here, you will be taken to the main programming interface, as shown in Figure 12. You are now431

ready to program your FPGA or FLASH.432

4.2.3 Programming the FPGA Directly433

To program an FPGA directly, select it from the device list on the main programming window (as shown434

in Figure 13, right click and select ’Program Device’.435

You will now be asked to select a .bit file as shown in Figure 14. This is available in the firmware release436

tarball as specified at the start of this chapter. You do not need to select a debug probes file. Once a file437

March 19, 2018 – 14:45 19



DRAFT

Figure 12: Vivado™ Programming Interface.

Figure 13: Selecting Device to Program.

March 19, 2018 – 14:45 20



DRAFT

has been chosen, select ’Program’ on the bottom right to write the file to the FPGA. Once complete your438

FPGA should now be fully reprogrammed.439

Figure 14: Selecting Bit file to Program.

4.2.4 Programming the FLASH ROM (VC-709)440

To program the FLASH ROM start once again from the main programming window. Find and right click441

on your FPGA and select ’Add Configuration Memory Device’ in the list, as shown in Figure 15442

From here you will be taken to the a dialog requesting that you select the memory device you wish to443

program. On the VC-709 this will typically be a Micron memory device with given parameters. To find it444

quickly enter the criteria demonstrated in Figure 16 and select the device as shown. Look for the device445

with alias ’28f00ag18f’.446

Once selected, press ’Ok’ on the bottom right and ’Ok’ again on the following window asking ’Do you447

want to program the configuration memory device now?’. On the subsequent dialog, choose the .mcs448

file you wish to program (provided with your firmware release) as shown in Figure 17. Select ’Ok’ at449

the bottom to program the FLASH. Once complete your card should be programmed with a non-volatile450

firmware installation that will survive loss of power to the host.451

4.2.5 Programming the FLASH ROM (BNL-711)452

FLASH programming for the BNL-711 is done via means of the fflash application, which is provided as453

part of the FELIX software suite. Please consult the instructions provided in Section 6.5.7. Note that the454

BNL-711 has 4 different FLASH sectors which can be programmed. The board will by default come up455

from powercycle loaded from the sector specified by the jumper configuration described in Appendix B.456

Please ensure you program the correct sector in order to see the expected image loaded.457

March 19, 2018 – 14:45 21



DRAFT

Figure 15: Select Vivado™ Flash Programming Dialog.

Figure 16: Memory Device Selection Interface.

March 19, 2018 – 14:45 22



DRAFT

Figure 17: Selecting .mcs file to program.

March 19, 2018 – 14:45 23



DRAFT

4.2.6 Enabling new FPGA Configuration458

If you have programmed our FPGA directly, please soft reboot your machine to pick up the new config-459

uration. For changes to the FLASH ROM a full powercycle may be needed to pick new firmware, unless460

you have manually programmed the FPGA from FLASH as described in 6.5.7. In the latter case a soft461

reboot will be sufficient.462

4.2.6.1 PCIe hotplug procedure463

Should you wish to avoid rebooting your machine (assuming a powercycle isn’t required) it is possible to464

rescan the PCIe bus re-synchronise with the new firmware image. Note that this procedure hasn’t been465

fully validated, and may produce inconsistent results. It should only be attempted if a reboot is prohibited.466

First, remove the device from the bus list as follows (root privileges needed):467

$ echo 1 > /sys/bus/pci/devices/0000:<bus ID>/remove468

(where you get the bus ID of the device from lspci)469

Then, rescan the bus to bring the device back with:470

$ echo 1 > /sys/bus/pci/rescan471

It is also recommended that you restart the FELIX driver at this point to pick up the new image:472

$ ./etc/init.d/drivers_flx restart473

.474

March 19, 2018 – 14:45 24



DRAFT

5 Software Distribution and Installation475

5.1 Software Distribution Protocol476

5.1.1 Pre-requisites477

FELIX software is currently only formally supported for systems using the SLC6 operating system. Stable478

functionality under CentOS7 is not guaranteed, but the intention is to move to more formal support in the479

near future.480

5.1.2 Release Announcements481

FELIX software (and firmware) releases will be announced on the following e-group:482

atlas-tdaq-felix-users@cern.ch483

Please subscribe to this group to stay up to date with the latest updates. All new releases will include a484

detailed change list and reference to the associated version of this user manual.485

5.1.3 Release Distribution Site486

The main distribution mechanism for new software releases is via a dedicated web page:487

https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/dist/488

software489

Here users will be able to find the latest firmware and software. The newest recommended version is490

marked in all cases. Installation instructions for the software suite and driver can be found below.491

5.1.3.1 FELIX Driver492

The latest version of the FELIX driver is available on the distribution site within ’software/drivers’.493

5.1.3.2 FELIX Software Suite494

The latest version of the FELIX software suite is available on the distribution site in within ’soft-495

ware/apps’.496

March 19, 2018 – 14:45 25

atlas-tdaq-felix-users@cern.ch
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/dist/software
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/dist/software
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/dist/software


DRAFT

5.2 Software Installation Instructions497

5.2.1 Driver RPM Installation Instructions498

5.2.1.1 DKMS499

The FELIX driver makes use of ’Dynamic Kernel Module Support’ (DKMS) to automatically track kernel500

changes once installed. Users should therefore only need to change their installation if a new version of501

the driver itself is released.502

5.2.1.2 Removal of Existing Driver Installations503

In order to update the FELIX driver it will first be necessary to remove any existing driver installations504

from your system. To do this please follow the procedure outlined below. You will require superuser505

privileges in order to perform the driver de-installation itself and subsequent cleanup.506

To check if a driver is already installed issue the following command:507

$ rpm -qa | grep tdaq508

If a driver rpm is installed you’ll see a response along the lines of:509

$ tdaq_sw_for_Flx-1.0.6-2dkms.noarch510

To remove the driver do the following (substituting ’filename’ for the results of the search in the previous511

step):512

$ rpm -e filename513

Once this operation is complete you will be in a position to install the latest FELIX driver.514

5.2.1.3 Installation of New Driver515

To install the FELIX driver RPM, run the following command (superuser privileges required):516

$ yum install tdaq_sw_for_Flx-1.0.6-2dkms.noarch.rpm517

(this should take 1-2 minutes to complete, due to the need to compile the driver for your kernel as per the518

DKMS framework)519

Once the driver is installed you should start it as follows (as superuser):520

$ ./etc/init.d/drivers_flx start521

Once started you can check the status of the card using:522

$ cat /proc/flx523

You should see output along the lines of Figure 18 (will vary depending on your firmware version).524

March 19, 2018 – 14:45 26



DRAFT

Figure 18: Example output from /proc/flx

5.2.2 Installation of FELIX Software Suite525

The FELIX software release is available pre-compiled as a tarball which can be installed anywhere and526

then set up for use by running a command line script. Each user can download their own version, or the527

release can be installed centrally and the location of the script shared with users.528

To unpack the tarball, run the following command:529

$ tar -xvzf <filename>530

Once unpacked, a setup script must be run to enable access to all libraries and binary files. The script can531

be run as follows from the release base directory:532

$ source felix-03-04-02/x86_64-slc6-gcc62-opt/setup.sh533

This script will need to be run with every new session, or added to the environment setup procedure. Once534

complete you should have access to all FELIX software. In the next section we will describe how to test535

your installation to verify full functionality.536

March 19, 2018 – 14:45 27



DRAFT

6 Basic Tools537

The FELIX software suite comprises both high and low level tools. At the highest level, the FelixCore538

application is responsible for communication and bulk dataflow in a full slice system. At a lower level,539

the suite provides a number of tools, both command line and GUI based, to facilitate system configuration540

and testing. This chapter will describe these low level tools such that users will be able to effectively541

communicate with, configure and test their system. If you are looking to set up a full system slice with542

data output to a network please consult Section 7, which describes the FelixCore Application and NetIO543

library. This section assumes that you have set up your FELIX software environment as described in544

Section 5. None of the tools in this section should require superuser privileges to run. All tools presented545

below work in both GBT and FULL mode, and for VC-709 and BNL-711, unless otherwise stated. Where546

special parameters are needed to distinguish modes this will be indicated. A quick reference for all tools547

to be covered in this section is presented in Table 2.548

Note: the FELIX software suite contains a number of tools which are considered for developer use only.549

All tools which are rated for use by front-end users are listed in this document. Use of any other software550

is not recommended unless asked to do so by a FELIX developer.551

6.1 E-link Configuration with elinkconfig552

Before FELIX can be used to transfer data its input and output links must be configured. The link553

configuration for a given FELIX card can be accessed and modified using the ’E-link configurator’554

application, or ’elinkconfig’. This is a GUI based tool which displays the current configuration state555

for all links associated with a given card. The tool supports both GBT and FULL mode.556

Note: the link configuration must be manually refreshed every time a FELIX FPGA is reprogrammed,557

including power-cycling of a host!.558

To run elinkconfig application issue the following command:559

$ elinkconfig560

From here you will reach the main configuration panel as shown in Figure 19561

The elinkconfig interface is split into three main areas. At the top there are two control bars to set FELIX562

card parameters, open/save configuration files as well as link selectors. The left main panel displays the563

from front-end to FELIX/host configuration for the selected link.564

6.1.1 Global Panel565

The elinkconfig global panel, shown in more detail in Figure 21 provides the top level interface for the566

tool. From there it is possible to select which FELIX card within your system you wish to configure,567

which link within that card, which link mode, as well as a number of other configuration properties. It is568

also possible to open previous configuration files, save new ones, and read the current configuration from569

the selected FELIX card.570

March 19, 2018 – 14:45 28



DRAFT

Table 2: List of all recommended user tools. For more information on each please click the tool name to visit the
dedicated section of this document.

Low Level Tools

flx-info View FELIX hardware and firmware status information

flx-config View and modify low-level firmware parameters

flx-init Initialise FELIX, as well set as low level GBT and clock/jitter cleaning parameters

flx-reset Reset FELIX or specific component

flx-monitor Status information for LTC2991 [14] devices about a BNL-711

Dataflow Tools

fdaq Receive data from FELIX and save to files or perform sanity checks

fupload Upload data through FELIX to a front-end E-link

FELIX Configuration Tools

elinkconfig GUI for link and data generator configuration.

felink Calculate link IDs given inputs with differing formats.

fereverse Reverse the endianness of data passing through an E-link.

fgpolar Switch 0/1 polarity of all data coming or going through a specific GBT link.

feconf Upload link and/or data generator configuration to FELIX from the command line.

femu Control FELIX data generators.

feto Control FELIX timeouts (global, TTC and link data, a.k.a ’instant timeout’).

ffash Command line programming tool for FLASH ROM modules in BNL-711 card.

General Debugging Tools

fcheck Perform configurable sanity checks on data from a file or dump selected data blocks
to screen.

fedump Receive data from FELIX and dump it to the screen.

fec Debug control and communication with GBT-SCA chip

fuptest Upload data through FELIX to multiple front-end E-links.

fplayback Load data through FELIX to a front-end E-link (or links) and expect data to return
via loopback. Verify returned data.

Remote Communication and Configuration Tools

fic Read or write GBTx chip registers via the GBT-link IC-channel

fgconf Read/Write GBTx registers via GBT-SCA i2c channel.

March 19, 2018 – 14:45 29



DRAFT

Figure 19: Main panel - elinkconfig

This panel also contains an advanced developer feature allowing you to select the maximum chunk size571

for a given E-link width - users are recommended to avoid changing these settings as they may cause572

unexpected behaviour.573

From the global panel it is possible to access a number of sub-panels, as indicated in Figure 21. These574

give access to more advanced configuration options, details of which are presented below.575

6.1.1.1 Data Path Fan Out Selectors: TH_FO and FH_FO576

FELIX operates two separate data generators within its firmware, one attached directly to the data path577

going to the host, and one attached to the path going towards the front-end. While the generators are578

attached, they have mutually exclusive access to the data path with regular non-emulated data in both579

directions. To avoid the two data types colliding only one type may access the path at a time. The580

fan out selectors control this access by ensuring that only internally emulated data or external data can581

March 19, 2018 – 14:45 30



DRAFT

Figure 20: elinkconfig panel split. The uppermost panel (purple box) controls global settings and GBT selection.
The left main panel contains the E-link configuration for the from front-end to host direction, the left main panel
the from host to front-end direction

be configured to pass at any one time. Most FELIX applications are able to configure these selectors582

automatically, but for the purposes of user testing it may be necessary to set these values manually. The583

selectors are accessed via the TH_FO (to host) and FH_FO (from host) buttons in the global panel. The584

resulting dialogs are presented in Figure 22.585

In order to switch the selector value simply open the required dialog and click on the link number you586

wish to toggle. A link displayed with its number alone is set to external data, if a link is displayed with587

its number plus ’E’ it is in emulation mode. It is also possible to set/unset all values using the ’All’ and588

’None’ buttons provided. Note that changes made in this dialog are immediately propagated to the FELIX589

card in question once you select ’OK’..590

In some cases a user may wish to prevent other applications from automatically changing these settings.591

For example, if a specific link is nominated for TTC information transfer it may be convenient to fix this592

March 19, 2018 – 14:45 31



DRAFT

Figure 21: elinkconfig global panel.

Figure 22: Fan out control for to-host (left) and from-host (right) directions. The setting for each link is displayed
separately (in this case for a 4-link VC-709 system). It is also possible to lock the settings using the dedicated check
box.

to external data for the duration of a test. In this case it is possible to lock the values by selecting the593

’locked’ check box. Applications will then be unable to change these settings until the card is reconfigured594

from this interface or the FPGA is reprogrammed. More information on configuring TTC transfer to the595

front-end are available in Section 6.1.3 below.596

6.1.1.2 Data Timeout Control Dialog597

FELIX offers the facility to time out pending incoming data after a configurable window from receipt of598

the first related packets. This is applicable for both regular and TTC data (in the to-host direction). Should599

data time out then all available blocks are transferred to the host with a dedicated trailer indicating that600

a timeout has occurred. The timeout feature is enabled by default, but can me modified or disabled/re-601

enabled via the control dialog accessible by selecting the ’Timeout’ button in the global panel. This will602

open the dialog shown in Figure 23. From here it is possible to disable/enable both regular data and TTC603

timeouts using the check boxes, as well as modify the timeout window sizes. This should typically only604

be done under the guidance of a FELIX developer for debugging purposes. Note that changes made in605

this dialog are immediately propagated to the FELIX card in question once you select ’OK’.606

March 19, 2018 – 14:45 32



DRAFT

Figure 23: elinkconfig data timeout control dialog.

6.1.1.3 Clock Source Selector Dialog607

As mentioned in Section 3.5.1, FELIX supports two different firmware clock sources. It is possible608

to switch between these sources from elinkconfig from the clock source selector dialog, accessible609

by clicking the ’clock’ button in the global panel. The selector dialog is shown in Figure 24, and is a610

simple two button toggle between TTC and local clock. Note that changes made here will be immediately611

propagated to the FELIX card in question once you select ’OK’. Please also consult Section 3.5.3 before612

making any clock changes, to ensure you correctly configure your FELIX card’s jitter cleaner post-clock613

change to ensure continued stable operation.614

Figure 24: elinkconfig clock source selector dialog.

6.1.2 To-Host Panel615

The to-host panel provides access to the configuration of the currently selected link (GBT or FULL mode)616

in the to-host direction. The type of panel to show can be selected in the global panel as described in617

Figure 21. In the GBT case it is possible to configure the complete set of E-links associated with this link,618

split up by E-group. It is also possible to configure the SCA and TTC links (see Section 6.1.6.4 for more619

info), the latter of which provides L1 accept information to the host. For each link it is also possible to620

select the type of encoding to be used, although 8b10b is recommended for all regular data links. A more621

detailed look at this panel is presented in Figure 25.622

Note: In GBT mode it is possible to run in either ’Normal’ or ’Wide’ mode. Wide mode increases the623

width of the GBT link to accommodate two extra E-groups. This feature is currently not yet rigorously624

tested. If wide mode is selected the two greyed out E-groups in the to-host panel will become accessible.625

In FULL mode this panel provides fewer options, as such this link mode does not contain logical E-link626

subdivisions. This version of the panel is presented in Figure 26.627

March 19, 2018 – 14:45 33



DRAFT

Figure 25: elinkconfig to-host panel (GBT mode). Various configuration options and tools are indicated as they
appear in the panel.

6.1.3 From-Host Panel628

The from-host panel makes it possible to configure the GBT links transporting data from FELIX towards629

connected front-end electronics. This panel only exists in GBTmode form as FULLmode is only a to-host630

protocol, and any FULL mode firmware will implement from-host links as GBT. A more detailed look631

at this panel is presented in Figure 27. A key difference between this panel and the to-host panel is that632

the link encoding available also includes several different TTC paths (in this case TTC-1 and TTC-2 are633

shown) which are for the propagation of TTC information from FELIX to the front-end. Depending on634

the E-link width used TTC paths from 0 to 4 are can be made available. Using this encoding selector it is635

therefore possible to nominate specific E-links to carry TTC data as needed.636

March 19, 2018 – 14:45 34



DRAFT

Figure 26: elinkconfig to-host panel (FULL mode).

6.1.4 Link and Data Generator Configuration Upload Dialog637

The to-and-from host panels allow you to put together a complete configuration set for all links handled638

by a given FELIX card. Once you have prepared your desired configuration, you can upload it to the639

FELIX in question by selecting the ’Generate/Upload’ button in the upper panel on the right. This will640

open the upload dialog, as shown in Figure 28. The GBT version is shown, but the FULL mode variant is641

essentially identical, beyond some disabled developer features.642

Once the panel is prepared, select ’Upload’ from the middle box labeled ’E-link Configuration’ to write643

your configuration to the card. If you also wish to configure the FELIX on-board data generators for tests in644

emulation mode select the ’Upload’ button in the lower ’Emulator Data’ box. Note that if you are running645

in emulation mode and wish to change your E-link configuration you must remember to upload to the646

emulator every time you upload a change. Note that in FULL mode the data generators will only produce647

FULL mode data in the to-host direction. In the to-front-end direction GBT data will be produced. In648

GBT mode GBT data will be produced in both directions.649

Once your configuration is uploaded you can then proceed to use the FELIX system as normal, the new650

settings will take effect immediately. To avoid unexpected behaviour please avoid reconfiguring the links651

while the FELIX card in question is in active use in your system.652

6.1.5 Guide to Valid E-link Configurations653

The E-link configuration uploaded to a FELIX card is actually a set of instructions to a component known654

as the Central Router. This is responsible for sending incoming data (in either direction) to the correct655

remote end point, as defined by E-link. For FULL mode there is no such thing as an E-link, and so656

the Central Router merely propagates a wide stream of bits across the link. In the GBT case, E-links657

are defined as separate logical links within a given physical GBT link. E-links can have (in the current658

implementation) three different bit widths, which given the link clock defines the maximum bandwidth659

March 19, 2018 – 14:45 35



DRAFT

Figure 27: elinkconfig from-host panel (GBT mode). Various configuration options and tools are indicated as they
appear in the panel.

they can sustain. The widths are 2, 4 and 8 bits, running at 40, 80 and 160 MHz respectively. There is660

currently no support for 16 bit E-links. A GBT link can therefore be considered as a logical aggregation661

of low bandwidth links into one high bandwidth transfer. For full details please consult the official662

documentation [3].663

In ’Normal’ mode, a GBT link is 80 bits wide, and this puts an upper limit on the number of E-links. It is664

therefore possible to have few wide 8 bit links, a larger number of narrower 2 or 4 bit links, or a mixture665

of the two. Should a GBT be operated in ’Wide’ mode (not currently widely used or tested) then a further666

32 bits are available within the GBT link (i.e. 112 in total), allowing for more E-links. The structure of667

a normal mode GBT frame is shown in Figure ??. It is up to the user to decide how much of the GBT668

width to utilise as per their front-end needs. It is permitted to leave link bandwidth unused by not assigned669

E-links to that part of the GBT frame.670

March 19, 2018 – 14:45 36



DRAFT

Figure 28: elinkconfig upload panel. Any features not indicated with arrows should be considered for experts only,
and used only under consultation with a FELIX developer.

Figure 29: Bit structure of a GBT frame, showing E-groups, IC and EC links, as well as GBT header and Forward
Error Correction (FEC).

Within a given GBT link, logical links are subdivided for management purposes into 16 bit wide ’E-671

groups’. Each E-group logically contains a combination of E-links up to an aggregate of 16 bits of width,672

looking at either extreme this means up to 8 of the narrowest 2 bit E-links at one end, or two of the widest 8673

bit E-links at the other. The E-group is the unit of connectivity around which the elinkconfig interface674

is built, with the to and from-host panels designed around E-group granularity.675

Looking within the E-group, there is one further layer of link identification to consider. Each group676

supports up to 8 logical ’E-paths’. These correspond to the logical connection end-points which the677

Central Router supports. For each E-group it is therefore only possible to send data to 8 destinations,678

which is designed to correspond to the maximum number of 2 bit E-links. However, the E-path structure679

imposes an additional restriction on E-link assignment. Because of the routing structure the E-path end680

points needed by E-links of different widths can overlap, meaning only a link of one width or the other681

is possible. Consider the routing diagram presented in the to-host panel in Figure 25. This display is682

March 19, 2018 – 14:45 37



DRAFT

designed to mirror the structure of the Central Router to make the dependencies as transparent as possible683

to users.684

The active 4 bit E-link in this panel is using E-path 2. This means not only that E-path 2 is unavailable685

for the 2 bit E-link which could be assigned to that path (see the column to the right) but also the 2 bit686

E-link for E-path 3, as the wider 4 bit link in E-path 2 overlaps with it. It is therefore possible to either687

have the 4 bit E-link active, or one or both of the 2 bit links, but 4 bit link cannot be active at the same688

time as either 2 bit link. Note that this doesn’t affect the E-link which could be active in E-path 1, as this689

doesn’t overlap. In this case this link is disabled through user choice, not through any logical limitation.690

However, if you wanted to enable the 8 bit wide E-link at E-path 1, this would overlap with all 2 and 4 bit691

E-links to its right, meaning only it could be active.692

To summarise, in order to build a valid link configuration no two links using the same E-path can be693

active at the same time within an E-group. Depending on the width of the link in question this may also694

disqualify other links of smaller width if they overlap with it. For this reason, elinkconfig will not695

allow you to select overlapping links.696

Within a given link map, each E-link can be configured to use different encoding formats as per front-end697

requirements. This area is still subject to active development, and it is strongly recommended that users698

work towards basing systems on 8b10b encoding. For FULL mode 8b10b is also the default.699

6.1.6 Guide to common configuration tasks700

6.1.6.1 Working with E-link configurations stored in files701

elinkconfig can read and store configuration sets in .elc files. In order to load a previously existing702

configuration set into the tool simply select ’Open’ from the global panel and choose the file to be loaded.703

The GUI will be automatically updated to reflect the new configuration. From here you can modify the704

configuration (if needed) by e.g. using the to and from-host panels to enable/disable E-links. Once your705

changes are complete you can upload the new configuration to the FELIX card of your choice using706

the ’Generate/Upload’ button in the global panel. Make sure to upload both the link and data generator707

configurations if you wish to use the latter. Finally, you can save your modified configuration to a file by708

selecting ’Save’ from the global panel.709

6.1.6.2 Modifying the existing E-link configuration on a FELIX card without a file710

If you are working without .elc files and wish you modify the existing configuration on a card you must711

first load it into the tool by selecting the card in question via the global panel and then pressing the ’Read712

Cfg’ button. This will populate the GUI with the configuration currently active on the card. From here713

you can modify the configuration as required and upload a new version to the card as advised above. You714

can also save your configuration to a file.715

March 19, 2018 – 14:45 38



DRAFT

6.1.6.3 Configure L1AInfo E-links to host716

Users wishing to route Level-1 Accept information to network endpoints via the FELIX host may configure717

any number of E-links for this purpose. Each such E-linkwill provide a 20-byte ‘L1AInfo’ block containing718

information for each Level-1 Accept. The contents of the block are presented in Figure 30. Users can719

view and edit the E-links currently selected for L1AInfo transmission by selecting the ‘EC/TTC’ button720

in the to-host panel. More details on this and other FELIX data structures is available in Appendix C.721

0 FMT(8) Len(8) = 20 reserved
1 XL1ID(8)
2
3
4

orbit(32)
L1ID(24)

Trigger Type (16) reserved(16)
L0ID(32)

L1Ainfo_v01

BCID(12)

Figure 30: The Level-1 Accept information message sent to the Back end software (20 bytes) as seen as five 32-bit
words.

6.1.6.4 Configure TTC E-links from host722

Users may configure any number of to-front-end links for the purpose of transferring TTC information to723

their electronics. The TTC data arriving at the FELIX card will be automatically decoded, and subsets724

made available to users for relay to front-ends in a configurable manner. The subsets which can be sent725

depend on the width of the E-link chosen for the transfer. By selecting the encoding box on the to-host726

panel for any given link it should be possible to see which options are available for that link.727

Figure 31: Example drop-down encoding menu for a 4-bit E-link. As this is a 4-bit link, the TTC-1 and TTC-2
options from Table 3 are available.

The current configuration sets are presented in Table 3, although this can evolve based on user requirements.728

For example, 2-bit E-links can only be configured in ’TTC-0’ mode, meaning only the L1A and the full,729

non-decoded B-channel data stream can be sent. Alternatively, 4-bit E-links can be configured to send730

L1Accepts, Bunch Counter and Event Counter Resets, and a choice of either the non-decoded B-channel731

data stream or a user defined broadcast bit. Detector groups should communicate to the FELIX group732

which bits in which locations they need.733

March 19, 2018 – 14:45 39



DRAFT

Table 3: Possible TTC options (Brcst[7:2] are the TTC user defined broadcast command bits (Brcst[1] is ECR,
Brcst[0] is BCR). Bit 0 is the first bit transmitted out.

E-link option bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
0 2 bits B-chan L1A
1 4 bits B-chan ECR BCR L1A
2 4 bits Brcst[2] ECR BCR L1A
3 8 bits B-chan Brcst[5] Brcst[4] Brcst[3] Brcst[2] ECR BCR L1A
4 8 bits Brcst[5] Brcst[5] Brcst[4] Brcst[3] Brcst[2] ECR BCR L1A
5 4 bits BCR BCR BCR BCR
6 2 bits BCR BCR

6.1.6.5 Configure SCA E-links to/from host734

SCA E-links are 2-bit wide HDLC-encoded links. This so-called EC mode is designed to carry slow735

control information to and from any desired front-end location. Users may set any number of 2-bit736

E-links (in either direction) to EC mode (not just the GBTx “EC” E-link) by selecting the ’EC/TTC’737

button (to host panel) or ’EC’ button (from host panel), activating a link and selecting HDLC encoding.738

Communication with an SCA ASIC requires one TX and one RX link. FELIX performs the HDLC739

encoding and decoding. Note that an OPC-UA server and client for the SCA ASIC are being provided to740

allow high level communication with an SCA ASIC by user software.741

6.2 Low Level Tools (System Status Monitoring & Control)742

The following section will cover some general tools which allow you to monitor the state of your FELIX743

system, as well as make configuration changes and reset the system as necessary. All tools provide more744

detailed descriptions of functionality through their help output, accessible by running the tool with the745

’-h’ option.746

6.2.1 flx-info747

The flx-info application is a command line tool which can print to the screen a range of monitoring and748

configuration information for you FELIX card(s). By default you will be presented with some system749

version and health status, as well as a basic link description. To access this default printout run the750

following command:751

$ flx-info752

This will provide output similar to that which is presented in Figure 32, including general information753

such as the firmware revision ’SVN version’ and link mode ’GBT or FULL’. To produce more verbose754

output pass the tool the -v or -vv option.755

Beyond this basic output, flx-info also makes it possible to read many FELIX configuration registers in756

detail. For a complete list of these options run flx-info with the ’-h’ flag. This will produce output like757

that shown in Figure 33.758

March 19, 2018 – 14:45 40



DRAFT

Figure 32: Default output of flx-info (assuming a VC-709 running GBT-mode firmware)

Figure 33: List of all flx-info features

6.2.2 flx-config759

The flx-config tool allows users to modify specific FELIX control and configuration registers from the760

command line. This should normally only be done on advice from a member of the FELIX development761

team. Other features are also available, but these should be considered for experts only unless advised762

otherwise by the development team. The two primary features users will use will be the ’list’ and ’set’763

features. List mode will dump the values of all FELIX registers to the screen. This will be a large amount764

of output, but can be searched with e.g. grep for the desired information. To run list mode execute the765

following command:766

$ flx-config list767

To change a given register value use the ’set’ feature as follows:768

March 19, 2018 – 14:45 41



DRAFT

$ flx-config set REGNAME=<new val>769

In this case REGNAME corresponds to the register to be changed and <new val> to the new value be770

stored. Once set you can use list mode to confirm the change.771

6.2.3 flx-init772

This tool has the ability to reset the GBT wrapper and transceiver, and should be performed every time773

the FPGA is reprogrammed (including in case of loss of power). The tool should also be run if the GBT774

fibres are disconnected at any point before attempting to transfer data once again.775

To run the basic initialisation issue the following command:776

$ flx-init777

If you wish to use more features (if instructed by a member of the development team), consult the help778

dialog as presented in Figure 34779

Figure 34: List of all flx-init features

6.2.4 flx-reset780

The flx-reset application makes it possible to selectively reset components of the FELIX firmware, or781

the complete board, as needed given the situation. This should only be done if advised by a FELIX782

development team member. To see the list of available parameters please consult the help output as783

presented in Figure 35.784

To reset a given component simply pass the name to flx-reset on the command line:785

$ flx-reset COMP_NAME786

March 19, 2018 – 14:45 42



DRAFT

Figure 35: List of all flx-reset features

6.2.5 flx-monitor787

The flx-monitor application is a new application dedicated to presenting status information for LTC2991-788

monitored components [14] aboard BNL-711 cards (and thus will not work with a VC-709). To see the789

list of available parameters please consult the help output as presented in Figure 36.790

Note - this tool is currently only available in the developer build, but is documented here for any users791

already working with it. It will be available in the user release from version 3.9.2 (if built) and 4.X792

onwards793

Figure 36: List of all flx-monitor features

6.3 Dataflow from Front-end via FELIX to FELIX host PC794

6.3.1 fdaq795

Fdaq is the primary tool for testing the FELIX data acquisition path. The tool can run in multiple modes,796

from waiting for input for FELIX from a front-end source to using one of the two internal data generators797

on the card. In both modes fdaq will measure and report throughput for the duration of the test. Data can798

be dumped to a file or discarded upon receipt. If running in discard mode fdaq will check the integrity of799

the data blocks and chunks it receives (e.g. block headers and chunk sizes). If an error is found the test800

will, by default, stop and fdaq will report on the first detected error. However, if the ’-D’ option is used801

the run will continue with a report printed on all errors received.802

Note that this section assumes that your E-links and data generators are configured properly as specified803

in Section 6.1. In this section we will cover various scenarios, but a list of all options can be found in the804

help output, which will be similar to that shown in Figure 37.805

Note: in full mode it will likely only be possible to run fdaq or a couple of seconds as you will rapidly806

exceed the maximum rate at which you can write to disc, which will then cause the application to abort to807

avoid buffer overflow. For reference, for a typical SSD this limit is approximately 300MB/s.808

March 19, 2018 – 14:45 43



DRAFT

Figure 37: List of all fdaq features

6.3.1.1 Running DAQ Test with External Data Source809

The most simple configuration for fdaq to run in is to listen for any data coming into FELIX over the810

GBT/FULL mode link and measure the bandwidth as this arrives at the host. In this mode the data is811

discarded. The only parameter a user must define is the time in seconds for which fdaq should perform812

the test. The default time is 1 second. The syntax is as follows:813

$ fdaq -t <time>814

For a three second test the output will resemble Figure 38.815

Figure 38: Output from fdaq test

If you would like to dump your data to a file for analysis simply specify a filename after the other command816

line parameters:817

$ fdaq -t <time> testfile818

This will run as above and produce a time-stamped .dat file in the directory you are running with a name of819

the format ’testfile-<timestamp>.dat’. You can specify the maximum size for the file with the ’-f’ option820

specifying a size in megabytes (default 1024, max 4096). If you would like to split the input from multiple821

E-links into different files use the ’-X’ option. The E-link number will be added to the filename.822

March 19, 2018 – 14:45 44



DRAFT

6.3.1.2 Running DAQ Test with Internal Data Generation823

A facility to use both data generators within the FELIX card for the purposes of testing is provided by824

fdaq. The ’internal’ generator is connected directly to the data output path of the card (i.e. after input side825

of the GBT link interface). Data from this generator therefore passes through the full FELIX firmware826

data path with the exception of the link layer itself. The ’external’ data generator is connected to the827

output path before the GBT layer. This means it can be configured to send data out of a GBT link. If828

some loopback fibres are connected it is therefore possible to send data out of one GBT transceiver and829

into another on the same FELIX and therefore test more of the data path. To access these options in fdaq830

one must use the ’-e’ option for internal data generation and ’-E’ for external data generation. The output831

from fdaq will be the same as shown for the external source tests. An example is shown in Figure 39.832

Figure 39: Output from fdaq test with internal data generation

6.4 Dataflow from FELIX Host PC to Front-end Systems via FELIX833

6.4.1 fupload834

The FELIX software suite makes it possible to transfer data from the FELIX host PC via the FELIX card835

to the front-end across a GBT link. This is done via the ’fupload’ tool. With this tool it is possible to836

transfer data either from a user defined file, or from the FELIX data generators, to a specified E-link across837

a GBT connection. The full range of features of the tool can be seen in the help text, as presented in838

Figure 40.839

Note: This tool works with FULL mode firmware versions, but uses a GBT link up to the front-end.840

6.5 FELIX Configuration Tools841

6.5.1 felink842

The felink tool is a link descriptor interpreter which allows you to work out the E-link ID for a given link843

given GBT/E-group/E-path (or vice versa). This is intended to be used in conjunction with e.g. fupload844

to allow users to work out which link ID they should target with their data. Some examples of possible845

uses will be given below, but you can find all possible options in the help text, as shown in Figure 41.846

A list of all valid E-links and coordinates can be seen with list mode, available with the following syntax:847

$ felink -l848

March 19, 2018 – 14:45 45



DRAFT

Figure 40: List of all fupload features

Figure 41: List of all felink features

6.5.1.1 Finding E-link ID from GBT/E-group/E-path of GBT/Bit address/width849

Consider the example where a user wishes to know the E-link ID for a link connected to GBT link 2,850

within E-group 3 and E-path 4. This can be done as follows:851

March 19, 2018 – 14:45 46



DRAFT

$ felink -G <GBT ID> -g <egroup ID> -p <epath ID>852

Filling these in gives results as in Figure 42, from which we can see that the E-link ID is 0x9C. The results853

also show alternative coordinates for the E-link in terms of GBT bit address and width.854

Figure 42: Result of E-link ID calculation by GBT/E-Group/E-path

It is also possible to search for link ID using the GBT ID, bit address of the start of the E-link in the GBT855

frame and E-link width. The syntax is as follows, noting that the index must correspond to a valid E-link856

start point.857

$ felink -G <GBT ID> -I <bit address> -w <E-link width>858

If a user then wants to search for GBT 1, bit 4 and width 2 the results will be as per Figure 43. This859

identifies the E-link in question as 0x42.860

Figure 43: Result of E-link ID calculation by GBT/bit address/width

These calculations can also be done in reverse, to yield the coordinates of a given known E-link ID. For861

this use the following syntax:862

$ felink -e <E-link ID in hex>863

If as user then wants to know the coordinates of e.g. E-link 0x55 the tool can be used to give the results864

in Figure 44. From this it can be seen that the GBT ID is 1, the E-group ID 2 and the E-path ID 5. An865

estimate for the bit address and width is also displayed.866

Figure 44: Result of E-link coordinate search for a known E-link ID

6.5.2 fereverse867

Note: this tool replaces ’feswap’, which is now deprecated.868

The fereverse tool makes it possible to swap the bit ordering of data propagating through a designated869

E-links (or set of links). For more details consult the help text, as shown in Figure 45.870

In order to use the tool to toggle the bits for a given E-link use the following syntax:871

$ fereverse -d <FELIX ID> -G <GBT ID> -g <E-group ID> -p 1 <set/reset>)872

March 19, 2018 – 14:45 47



DRAFT

Figure 45: List of all fereverse features.

In this case the ’set’ option indicates the bits should be switched and ’reset’ indicates deactivation of the873

switch. It is also possible to pass the E-link ID directly using the ’-e’ option. If neither set or reset874

are specified the tool will simply report back the current status. Examples of both cases can be found in875

Figures 46 and 47.876

Figure 46: Using fereverse to enable endianness swap by specifying GBT/E-group and E-path.

Figure 47: Using fereverse to disable endianness swap with E-link ID.

6.5.3 fgpolar877

The fgpolar tool makes it possible for FELIX to adapt to the bit polarity of data produced by front-end878

systems and sent via a Versatile Link [15] transceiver. The transceiver, by design, swaps the polarity879

of incoming and outgoing bits (i.e. 0 becomes 1 and vice-versa). Some front-end systems may already880

account for the swap in their design, but in order to send and receive packets to and from those who haven’t881

this tool configures FELIX to automatically swap the bits for any designated GBT links (and therefore all882

E-links within). For more details consult the help text, as shown in Figure 48.883

In order to use the tool to toggle the polarity of a particular GBT link use the following syntax:884

$ fgpolar -d <FELIX ID> -G <GBT ID> <set/reset>)885

In this case the ’set’ option indicates the activation of a polarity switch and ’reset’ indicates deactivation886

of the switch. It is also possible to modify the Tx and Rx directions separately using the ’-r’ and ’-r’887

flags accordingly. By default both will be changed. The expected output from the tool can be found in888

Figures 49 and 50.889

March 19, 2018 – 14:45 48



DRAFT

Figure 48: List of all fgpolar features.

Figure 49: Using fgpolar to swap bit polarity.

Figure 50: Using fgpolar to disable bit polarity swap.

6.5.4 feconf890

feconf is a command line tool providing some of the functionality of elinkconfig. With this tool it is891

possible to upload a pre-defined E-link configuration file (.elc format) to a FELIX card. Alongside the892

basic configuration, feconf also makes it possible to configure the FELIX firmware date generators. For893

more information on the meaning of each parameter, consult Section 6.1 on elinkconfig. For a full list of894

commands consult the help text, as shown in Figure 51.895

Figure 51: List of all feconf features.

March 19, 2018 – 14:45 49



DRAFT

6.5.5 femu896

The femu tool gives users command line control over the FELIX firmware data generators, both in the897

from and to host directions. The full range of features of the tool can be seen in the help text, as presented898

in Figure 52.899

Figure 52: List of all femu features

6.5.6 feto900

The feto tool gives users command line control over the FELIX block timeout at the level down to901

individual E-links. If enabled FELIX will time out incoming data blocks taking longer than a designated902

period to arrive and attach a timeout trailer to the block. The block will then be transferred to the host as903

normal. The full range of features of the tool can be seen in the help text, as presented in Figure 53.904

Figure 53: List of all feto features

March 19, 2018 – 14:45 50



DRAFT

6.5.7 fflash905

The fflash tool is designed specifically for programming FLASH memory modules aboard BNL-711 from906

a .mcs formatted firmware image. Note that at this point, any reprogramming of the fpga from flash907

will require either a reboot or PCIe hotplug operation (see Section 4.2.6.1 for details) to return the board908

to normal operation with the new firmware image in place. A full listing of commands is available in909

Figure 54.910

Figure 54: List of all fflash features.

March 19, 2018 – 14:45 51



DRAFT

6.6 General Debugging Tools911

6.6.1 fcheck912

fcheck is a debugging tool which can analyse the .dat files produced by the fdaq tool and check for data913

integrity issues. The tool will perform checks on a file to a specified degree of severity. For more details914

on each level consult Figure 55. As well as running checks, the tool can also be used to dump selected915

data blocks to screen, either split into data chunks or as raw data, to facilitate closer inspection of any916

issues found. To run the check, specify the file name and check detail level as follows:917

$ fcheck -B <severity> testfile.dat918

A full list of features available with fcheck can be seen in the help text, as shown in Figure 55919

Figure 55: List of all fcheck features

6.6.2 fedump920

The fedump tool is designed tomake it possible to dump data arriving at FELIX to the screen for debugging921

purposes. Users of the tool can filter the data stream by E-link ID and FELIX card number, as well as922

having the option of displaying the data in raw format. More advanced options are available, but should923

only be used in consultation with the FELIX developers. For more details consult the help text, as shown924

in Figure 56.925

6.6.3 fec926

The fec tool is designed for the communication with a GBT-SCA chip present on a remote hardware927

system connected to FELIX via GBT links. Commands are read and written using the EC link component928

of the GBT protocol. The tool makes it possible to send pre-programmed signals to the GBT-SCA, as well929

as custom command strings. For a full list of commands consult the help text, as shown in Figure 57.930

March 19, 2018 – 14:45 52



DRAFT

Figure 56: List of all fedump features.

Figure 57: List of all fec features.

6.6.4 fuptest931

The fuptest tool makes it possible to transfer data from the FELIX data generators (with more fine-grained932

pattern control than with ()fupload), to defined E-links across a GBT connection. The tool will then933

expect to receive the same data back via loopback (via the same link or another). The full range of features934

of the tool can be seen in the help text, as presented in Figure 58.935

Note: This tool works with FULL mode firmware versions, but uses GBT links up to the front-end.936

6.6.5 fplayback937

fplayback is an advanced testing tool (GBT mode only) with the ability to upload data to the FELIX card938

for transfer out of a the GBT link (multiple E-links) and then receive the same data back before confirming939

it’s integrity by comparison with the original. The data files expected by this tool are the of the .dat format940

produced by fdaq. The tool requires that your FELIX card be connected either with external loopback941

fibres or for a longer loop via a remote front-end system. In order to use the tool pass the .dat filename942

as well as optional parameters for amount of blocks to transfer (-F, default all) and to data from a given943

E-link (-e). For example, to send 500 blocks from ’testfile.dat’ for E-link 5 do the following:944

March 19, 2018 – 14:45 53



DRAFT

Figure 58: List of all fuptest features

$ fplayback -e 5 -F 500 testfile.dat945

For an fplayback to be successful there are 2 conditions to be met: firstly, the integrity check should not946

return any errors (provided the original file is without errors), and the number of chunks (and bytes) per947

E-link written to the resulting file should be identical to the original file.948

For a full list of options for fplayback you can view the help information, as shown in Figure 59.949

Figure 59: List of all fplayback features

6.7 Remote Hardware Command and Configuration Tools950

6.7.1 fic951

The fic tool is designed for communication with a GBTx chip present on a remote system connected to952

FELIX via GBT links. Commands are read and written using the IC link component of the GBT protocol.953

With this tool it is possible to read and write data to a specific GBTx address for the propagation of954

command and configuration information as part of debugging or preparation of front-end components for955

a data taking session. For a full list of commands consult the help text, as shown in Figure 60.956

March 19, 2018 – 14:45 54



DRAFT

Figure 60: List of all fic features.

6.7.2 fgconf957

The fgconf tool makes it possible to read and write GBTx registers accessible via i2c through a GBT-SCA958

chip. For a full description please consult the help output as per Figure 61:959

March 19, 2018 – 14:45 55



DRAFT

Figure 61: List of all fgconf features.

March 19, 2018 – 14:45 56



DRAFT

7 Felixcore Application and NetIO960

7.1 Operational Principles961

The FELIX core application (called felixcore) is the central process of a FELIX system. The user interacts962

with the felixcore application via network endpoints to receive data from E-links or to send data to E-links.963

Systems such as software RODs, DCS, calibration and monitoring systems all connect with FELIX via964

felixcore.965

Felixcore also supports monitoring of operational data via a web front-end and publishing of E-link966

information via the FELIX bus system.967

NetIO

Buffer

FLX Card
(PCIe)

Network 
Interface
(PCIe)

Worker Thread

PCIe Packet 
Decoder

Block Queue

Worker Thread

PCIe Packet 
Decoder

Block Queue

Worker Thread

PCIe Packet 
Decoder

Block Queue

Worker Thread

PCIe Packet 
Decoder

Block Queue

NetIO Event Loop ThreadNetIO Event Loop ThreadNetIO Event Loop ThreadNetIO Event Loop Thread

Card Reader 
Thread

FLX Card 
API

Statistics and Monitoring Thread

PCIe Packet Encoder NetIO Event Loop Thread

Buffer

Figure 62: The architecture of the FELIX core application.

Figure 62 shows a diagram of the architecture of the FELIX core application. In the case of a system with968

multiple FLX cards, one application can be run per card.969

7.2 Configuration970

The configuration parameters of the felixcore application are listed in Figure 63. The parameters can be971

passed to the application either on the command line or as part of a file.972

March 19, 2018 – 14:45 57



DRAFT

Figure 63: Command line interface options for the felixcore application. Each option can also be set in the
configuration file. The option key in that case is the long option without the leading dashes.

March 19, 2018 – 14:45 58



DRAFT

7.3 Monitoring973

7.3.1 FelixCore Native Monitoring974

The felixcore application provides monitoring and status information via a web front-end. By default the975

web front-end is available on port 8080. To access the web front-end use a web browser and point it to976

http://hostname:8080. Figure 64 shows a screenshot of the web app.977

Figure 64: Screenshot of the integrated felixcore monitoring web app

7.3.2 Monitoring with felix-web-mon978

Felix-web-mon is a user oriented web visualisation application for real time monitoring of FELIX metrics979

through live charts as well as visualisation of historical data. It uses the FELIXbus system to auto-980

discover FELIX nodes in the same local subnet. Metrics are continuously recorded into a mongodb981

database, making it possible to plot historical charts at a later time. Users should make use of this tool if982

they require more flexible monitoring with the option of historical archiving of monitoring data.983

7.3.2.1 Compilation984

Felix-web-mon is currently provided as standalone package. Users wishing to compile it should get the985

source and instructions from gitlab at the address below.986

https://gitlab.cern.ch/atlas-tdaq-felix/felix-web-mon987

March 19, 2018 – 14:45 59

 https://gitlab.cern.ch/atlas-tdaq-felix/felix-web-mon


DRAFT

7.3.2.2 Usage988

When installed on a machine (see README.md in gitlab for detailed installation instructions), the web989

application can be accessed under the address <hostname>:8000. Here users will be presented with a990

front page as shown in Figure 65.991

Figure 65: felix-web-mon front page

The user interface consists of the following parts:992

• Menu bar: as shown on the top left of Figure 65. A simple menu with 2 links: a folder icon for993

history data plots, and a live link to come back to live mode.994

• Status bar: as shown in Figure 66. Displays some information like the client-server connection995

status, the number of connected hosts and the mode ’live’ or ’history’. Figure-12: Status bar996

• FELIX hosts list: as shown in Figure 67. Displays the FELIX hosts that are connected and997

automatically discovered by the FELIXbus API. An icon next to the name of each item shows the998

status ’disconnected’ (red) or ’connected’ (green) of each host.999

• Charts area: In this panel there are tabs Statistics, Configuration and History (hidden by default)1000

for each connected FELIX host. The Statistics tab (Figure 14), loaded by default, shows live charts1001

of metrics. Clicking on an item in the FELIX hosts list on the left displays the chart area of the1002

corresponding host.1003

• The Configuration tab: showing the configuration data of corresponding FELIX host (Figure 68).1004

• The History tab: shown only when a user clicks to load history data on the folder icon in the menu1005

bar (Figure 69).1006

March 19, 2018 – 14:45 60



DRAFT

Figure 66: felix-web-mon status display

Figure 67: felix-web-mon host list

Figure 68: felix-web-mon config page

March 19, 2018 – 14:45 61



DRAFT

Figure 69: felix-web-mon history page

7.4 FelixCore Examples1007

When running with multiple threads, FELIX will publish data on multiple TCP/IP ports. The examples1008

are all started with 1 thread using the option -t 1. This ensures that all data is published on a single1009

TCP/IP port (default 12345), which facilitates debugging. To read out data from a felixcore application1010

that is started as in the examples below, use a client (for example netio-cat or fatcat), and point it to1011

port 12345 of the FELIX host. Of course, running with only one worker thread limits performance and,1012

depending on the workload, FELIX might not be able to keep up with the load. In that scenario increase1013

the number of worker threads accordingly. The tool felix-bus-list can be used to obtain the mapping1014

of E-links to TCP ports of a FELIX system.1015

A running felixcore instance can be stopped by pressing Ctrl+\.1016

7.4.1 Tests without an FLX Card1017

• Starting felixcore with input from a file (no card required):1018

$ felixcore -t 1 -f path/to/file.blocks --notoflx1019

• Starting felixcore with the internal software datagenerator (no card required):1020

$ felixcore -t 1 --data_generator --ttc_generator --notoflx1021

7.4.2 Tests with an FLX Card1022

• Starting felixcore with one processing thread and emulators enabled. Emulators are configured to1023

send data via PCIe to the FELIX host software.1024

$ felixcore -t 1 --emu_to_host 0xff1025

E-link and emulator data configuration can be adjusted with the elinkconfig tool.1026

March 19, 2018 – 14:45 62



DRAFT

• Starting felixcore with one processing thread and emulators enabled. Emulators are configured to1027

send data via detector links to external receivers or via loopbacks back to the FLX card:1028

$ felixcore -t 1 --emu_from_host 0xff1029

E-link and emulator data configuration can be adjusted with the elinkconfig tool.1030

• Send a message to a running felixcore instance that will forwarded to E-link 15.1031

$ felix-dcs -H 192.168.15.1 -e 15 -m "hello world!"1032

Note: The tool felix-dcs is obsolete and will be discontinued in the future. The functionality will1033

be integrated in the new tool fatcat.1034

7.5 Connecting to a felixcore instance using NetIO tools1035

The felixcore application uses the NetIO publish/subscribe system to distribute data. The tool netio-cat1036

can be used to analyze published data. For example,1037

$ netio-cat subscribe --host 192.168.15.2 -t 15 -t 42 -e raw1038

will let netio-cat subscribe to E-links 15 and 42 of the felixcore application running on the host1039

192.168.15.2 with the default port 12345. The encoding is set to raw, which will simply write a1040

hexdump of each received message. For other formatting and subscription options, see netio-cat1041

-h.1042

7.6 Connecting to a felixcore instance using FATCAT1043

FATCAT is an advanced analysis and test client for FELIX and the successor of multiple ad-hoc tools like1044

felix-client and felix-dcs. The application is currently experimental. For help options see1045

$ fatcat -h1046

In the future fatcat can be used to debug data streams coming from FELIX, send data to detectors via1047

FELIX, record data to disk, manage data subscriptions among multiple FELIX hosts, benchmark FELIX1048

systems and analyze recorded data.1049

March 19, 2018 – 14:45 63



DRAFT

7.7 Discovering E-links with the FELIX BUS system1050

Clients that want to receive data from or send data to specific E-links need to know by which FELIX1051

instances the desired E-links are managed. The FELIX BUS system is used for this purpose. FELIX1052

instances broadcast at regular intervals information about connected E-links. Clients can retrieve this1053

information and build internal lookup tables using the library libfelixbus.1054

The E-Link IDs published by felixcore are global E-link IDs, i.e. they uniquely identify E-links across1055

all FELIX hosts. This requires that the FELIX ID (command line option �felix_id) is set to a unique1056

number for each felixcore instance. The default FELIX ID 0 is fine to use for tests where only a single1057

FELIX is running.1058

The tool felix-buslist can be used to display the tables:1059

$ felix-buslist -t1060

Tables in FelixBus (ctrl\ to quit)1061

1062

FelixTable::print(): table.size()=41063

PeerId FelixID Address1064

1950EDDFD4821AF225D99EBCE9B22152 0468680B8D9D0388D8D1078B725D2E3B tcp://10.193.16.62:123451065

1950EDDFD4821AF225D99EBCE9B22152 238B9263BA79A05378652F433A25C949 tcp://10.193.16.62:123481066

1950EDDFD4821AF225D99EBCE9B22152 4E418C3646578B46FD939AF6AC5FFB5B tcp://10.193.16.62:123461067

1950EDDFD4821AF225D99EBCE9B22152 C87FAE7D74FC1D99BFB454ACD74EBA23 tcp://10.193.16.62:123471068

1069

ElinkTable::print(): table.size()=101070

PeerId FelixId ElinkId1071

1950EDDFD4821AF225D99EBCE9B22152 238B9263BA79A05378652F433A25C949 37355791072

1950EDDFD4821AF225D99EBCE9B22152 C87FAE7D74FC1D99BFB454ACD74EBA23 37355801073

1950EDDFD4821AF225D99EBCE9B22152 4E418C3646578B46FD939AF6AC5FFB5B 37355911074

1950EDDFD4821AF225D99EBCE9B22152 0468680B8D9D0388D8D1078B725D2E3B 37356181075

1950EDDFD4821AF225D99EBCE9B22152 238B9263BA79A05378652F433A25C949 37356761076

1950EDDFD4821AF225D99EBCE9B22152 C87FAE7D74FC1D99BFB454ACD74EBA23 37357011077

1950EDDFD4821AF225D99EBCE9B22152 4E418C3646578B46FD939AF6AC5FFB5B 37357291078

1950EDDFD4821AF225D99EBCE9B22152 0468680B8D9D0388D8D1078B725D2E3B 37357321079

1950EDDFD4821AF225D99EBCE9B22152 238B9263BA79A05378652F433A25C949 37357391080

1950EDDFD4821AF225D99EBCE9B22152 C87FAE7D74FC1D99BFB454ACD74EBA23 37357411081

The example shows that there is one felixcore instance running (peer ID 1950...) with four threads (FELIX1082

ID 0468..., 238B..., 4E41..., C87F...), each reachable on a separate TCP port. This felixcore instance1083

handles 10 different E-Links which are distributed among the four worker threads.1084

7.8 Debugging1085

7.8.1 Using the FelixCore event tracing framework1086

FelixCore includes a trace framework that can be used to gain a better understanding about latencies added1087

by individual parts of a communication chain or to get detailed information about the dataflow of a single1088

message through the system. The trace framework operates by logging events with precision timestamps1089

to a file.1090

To enable the trace framework, start the felixcore application with the option --trace. FelixCore will1091

then timestamp events and record these events in a file "trace.csv" in the current working directory.1092

March 19, 2018 – 14:45 64



DRAFT

The contents of trace.csv will contain of lines similar to this:1093

20605900,MSG_RECV,01094

20606530,FROMHOST_BLOCK_WRITE_START,01095

20606584,FROMHOST_BLOCK_WRITE_COMPLETE,01096

The CSV file contains three columns.1097

1. The first column contains the timestamp of the event in microseconds.1098

2. The second column contains the type of the event. Currently we have these events:1099

TOHOST_BLOCK_READ Issued when a 1 kB block is read from the FLX card1100

FROMHOST_BLOCK_WRITE_START Start of DMA transfer of blocks to the FLX card1101

FROMHOST_BLOCK_WRITE_COMPLETE DMA transfer to the card completed1102

MSG_RECV A message was received from the network for an E-link1103

MSG_SEND A data chunk is published and is being sent to clients in the network1104

3. The third column contains an E-Link id that associates an event with an E-link if applicable.1105

Note that the trace.csv file is *not sorted by timestamp*. If needed, the events in the file need to be sorted1106

in a post-processing step.1107

March 19, 2018 – 14:45 65



DRAFT

8 Resources for Front-End Developers1108

This section is aimed at collecting useful information for front-end developers to aid the design and im-1109

plementation of front-end firmware/hardware for interaction with FELIX. Useful tips based on experience1110

so far will also be presented, in a section that will grow over time as more feedback is received.1111

8.1 FELIX Firmware Modules for Front-end Users1112

The FELIX team have produced a number of self contained firmware modules which are intended for1113

integration into front-end firmware both for testing and production purposes. These will make it possible1114

to test data transfer functionality from the output layer of the front-end firmware to FELIX and beyond,1115

before integrating more of the front-end logic. These modules can be divided up between GBT and FULL1116

mode use cases.1117

8.1.1 Downloading Firmware Source1118

A full description (including diagrams) of the modules discussed below, as well as the relevant firmware1119

source, is available on the FELIX project distribution site:1120

https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/dist/1121

examples/1122

The site contains multiple revisions, for compatibility with different FELIX firmware versions. GBT-1123

compatible packages are labelled ’ElinkInterfaceSources’ and FULL mode-compatible packages are1124

labbeled ’FullmodeInterfaceSources’. Please consult the documentation within the files for compatibility1125

information.1126

8.1.2 GBT Test Modules1127

From a GBT perspective the modules provided depend on whether the GBT implementation is in an1128

FPGA or with a GBTX chip. Common to both is a simple data generator module, which generates an1129

incrementing counter and can be attached to the input port of the GBT module to provide a basic data1130

source for link testing.1131

8.1.2.1 GBT-FPGA1132

For FPGA-based GBT a module will be provided to wrap and drive the GBT link in communication with1133

FELIX (in both directions). All modules will be fully compatible with the official GBT-FPGA core [16].1134

8.1.2.2 GBTx1135

For GBTx chips all that is needed is to connect the provided data generator to a chip e-port, thus providing1136

data on one E-link across the GBT.1137

March 19, 2018 – 14:45 66

https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/dist/examples/
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/dist/examples/
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/dist/examples/


DRAFT

8.1.3 FULL Mode Test Modules1138

8.1.3.1 Link Layer Tests1139

For FULL mode implementations the FELIX developers provide a link layer test package, making it1140

possible to verify functionality at transceiver level (e.g clock jitter stability, cleaning and configuration).1141

Users should be able to integrate this into their front-end design for basic tests before implementing higher1142

level link protocols.1143

8.1.3.2 Protocol Tests1144

Once the link layer is verified, users can integrate the ’stream controller’ module, also provided by the1145

FELIX developers, which manages the FULL mode link protocol and adds e.g. start and end of packet1146

markers. This is recommended for use not just in testing but also final implementation. Alongside this1147

module a simple data generator is also provided which can be used for testing data transfer across the1148

link.1149

8.2 General Hints and Tips1150

8.2.1 Known Technical Requirements for FELIX Communication1151

• E-link “chunks” or packets are even multiples of bytes or 8b/10b symbols. If an odd number of1152

bytes are received from the front end, FELIX will add an extra padding byte. In the to-front end1153

direction, the length must be an even number of bytes.1154

• Synchronization of 8b/10b encoding requires two consecutive comma characters.1155

8.2.2 Examples of Design Best Practice based on Current Experience1156

• For GBT-mode transmission to FELIX, use 8b/10b encoding on the E-links. Avoid the non-encoded1157

fixed length or variable length formats, because no resynchronization is possible if bits are lost or1158

repeated on the E-link. Comma symbols are used to align to 10-bit symbols in the bit stream. They1159

are considered idles and can be inserted in the data stream anywhere. Transmit “frequent” pairs1160

of commas. This will minimize data loss when FELIX tries to resynchronize when the symbol1161

boundary is lost due to a missed or repeated bit on the E-link.1162

Start-of-Packet (SOP) and End-of-Packet (EOP) symbols delineate packets, e.g. event boundaries.1163

This allows FELIX to easily resynchronize to event boundaries should synchronization be lost.1164

EOP is not strictly required. However, if not present, a long pause in the E-link data will cause the1165

packet just before the pause to wait in a FELIX buffer until the next SOP.1166

March 19, 2018 – 14:45 67



DRAFT

• The E-link clock, input, and output data rates are independent. The only restriction is that within1167

a GBT E-link group all the clocks must have the same frequency, all the data inputs the same data1168

rate and all the outputs the same data rate. However groups can be setup independently from each1169

other. Read the GBTx manual carefully to understand the GBTx group restrictions and bit order.1170

Note, however, that a clock output is only available if its corresponding Tx is enabled. This means,1171

for example, that a bank running with 320Mb/s E-links can supply only two clocks, but they can1172

be 40, 80, 160 or 320MHz.1173

• In 8b/10b encoded E-links, FELIX can be asked to assert BUSY by sending BUSY-ON and BUSY-1174

OFF symbols (i.e. out-of-band symbols that can be sent any time, even within data packets). This1175

should be done only in exceptional cases or at start of run. It should not be the normal mode of1176

protecting against buffer overflow. Instead, complex dead time should be defined to prevent most1177

buffer overflows.1178

• The event data sent to FELIX are not expected to be ATLAS-standard event fragments. FELIX just1179

transports the data to the “Data Handler” (a.k.a. Software ROD) where detector specific software1180

may transform the data as required and format it into ATLAS-standard event fragments for the1181

ATLAS Read out system (ROS).1182

• In addition to sending all events to the Data Handler, FELIX can send all, or a sample of, events to1183

other network end points for monitoring. Extra monitoring data may be included as packets separate1184

from event data packets in the E-link data stream by using FELIX’s stream IDs at the start of the1185

packet.1186

• DCS information may be included as packets separate from event data packets in an E-link data1187

stream by using FELIX’s stream IDs at the start of the packet.1188

• Any 80Mb/s E-link can be used to connect to a GBT-SCA ASIC. The E-link clock must be1189

configured to use 40MHz, i.e. the data is sent in DDR mode.1190

• The “EC” link can be used as an ordinary E-link at 80Mb/s; its E-link clock may be either 40 or1191

80MHz.1192

• Fiber connections: to be added1193

• Broadcasts to the front end: to be added1194

• TTC: FELIX can send TTC Level-1 Accept information on any E-link declared as a “TTC” E-link.1195

“TTC” E-links can be 80, 160 or 320Mb/s E-links, to transfer 2, 4 or 8 TTC bits on every BC clock.1196

The contents of the TTC word is defined by the FELIX configuration and can be chosen from the1197

ten bits in Table 5. Note: In all three cases, the E-link clock can be 40MHz, i.e. BC clock The data1198

is sent with FIXED latency.

Table 4: Possible TTC bits that can be sent on an E-link defined as a TTC E-link.
Table 5: Below is the list of bits decoded from the TTC system that can be chosen to be sent on an E-link defined as
a TTC E-link.

Brcst[7] Brcst[6] Brcst[5] Brcst[4] Brcst[3] Brcst[2] ECR BCR B-chan L1A

1199

March 19, 2018 – 14:45 68



DRAFT

“Brcst[i]” are the eight TTC broadcast bits sent on the TTC “B-channel” which the user controls via1200

the TTCvi VME module. Sending the raw B-channel is also an option, sent one bit per BC clock.1201

More options can be requested to suit the needs of specific detectors. Note that currently, the chosen1202

bits are refreshed every bunch crossing by those sent on the fiber from the TTCvi module. This is1203

unlike the legacy TTCrx ASIC where, for some bits (not BCR or ECR), sending the coresponding1204

bit from the TTCvi toggled the current state of the coresponding TTCrx ouput bit. In future, FELIX1205

will support both modes of opeation.1206

As an example, the NSW uses the broadcast bits to send an 8-bit TTC word with the following bits:1207

L1A, L0A, BCR, ECR, EC0R, test_pulse, soft_rst, SCA_rst1208

8.2.3 Frequently Asked Questions1209

• Is GBT wide mode supported?1210

Yes.1211

• Is GBT 8b/10b mode supported?1212

No.1213

• Is the phase of the eight “utility” clocks fixed with respect to the E-link clocks?1214

Yes, there is a fixed relationship with the E-Link clocks.1215

Note that the eight utility clocks have worse jitter than the E-link clocks.1216

• Can the GBT output a 40MHz E-link clock, use that clock in 40MHzDDRmode for the to-frontend1217

link, but accept data on the uplink at 160 or 320Mb/s? (Assuming the FE ASIC multiplies the1218

40MHz to 80, 160 or 320MHz.)1219

Yes, that is possible. Also the to-frontend link can receive at 80, 160 or 320Mb/s.1220

• Is there a maximum packet length on the E-link in 8b/10b mode?1221

No.1222

March 19, 2018 – 14:45 69



DRAFT

Appendices1

March 19, 2018 – 14:45 70



DRAFT

A Setting up a TTC System for use with FELIX1

This section is meant to help users of FELIX systems with the set-up of a TTC system. It is a work in2

progress, maintained by Markus Joos (CERN). Figure 70 shows the final cabling of TTCvi and TTCvx3

modules for a TTC setup with B-channel. The A-channel carries the Level-1 Accept; the B-channel carries4

BCR and the other TTC commands. The TTCvi-TTCvx pair should have already been tuned. If not, see5

SectionA.1 below. Note: For a TTCex this may look different. A list of all the materials you will require6

to set up a TTC system is presented in Table 6.7

Figure 70: Image of cabled TTC system with B-channel connections

March 19, 2018 – 14:45 71



DRAFT

Table 6: Materials needed to set up a TTC system

Item Source Remarks

VMEbus crate Can be rented from the CERN
Electronics Pool

Other crates may do as well

VMEbus master We recommend a SBC from
Concurrent Technologies (AT-
LAS standard). Support can be
given for VP717, VP917 and
VP-E24

TTCvi VMEbus card Can be rented from the CERN
Electronics Pool (but the Pool
may be out of stock)

The TTCvi is no longer in pro-
duction.
Make sure the VME base ad-
dress switches are set to match
your software.

TTCvx VMEbus card or TTCex
VMEbus card

TTCvx and TTCex can be rented
from the CERNElectronics Pool
(but the Poolmaybe out of stock)

The TTCvx/ex is no longer in
production. The TTCvx has a
LED driver, the TTCex has a
laser driver

3 LEMO cables (1 or 0.5 ns)

1 optical multi-mode (TTCvx)
or single-mode (TTCex) fiber
with ST connectors on both ends

Max length of the fibre:
TTCvx: 20m; TTCex: 100m

TTCoc ATLAS (not clear who to ask;
Maybe P. Farthouat)

TTC fan-out; needed if you have
several FELIX

optical attenuator
Are these available somewhere?

Needed only for use with a
TTCex without TTCoc.
The optical attenuator has to be
a single-mode attenuator of 3-
20 dB and has to be connected
directly to the TTCex output.
The FTPDA-R155 should work
with a TTCvx without attenua-
tor. In case of a TTCex an atten-
uator of 3 dB is recommended
for the FTPDA-R155.
The FTPDA-R155 has a sensi-
tivity of -31 dBm and saturates
at +1 dBm.

If you need to tune the TTCvi-TTCvx pair, you need in addition:
2 LEMO cables (5-10 ns)
2 LEMO Y-adapters
2 LEMO-BNC adapters
2 50Ohm terminators (Only required if your oscilloscope has no internal termination.)

March 19, 2018 – 14:45 72



DRAFT

A.1 Tuning a TTC system8

If your TTCvi-TTCvx pair has not been tuned, follow the instructions in this section. Cable the TTC system9

as shown in Figure 71. Note: for a TTCex this may look different. For more information please consult the10

section “Tuning procedure 2” of the TTCvi manual (http://www.cern.ch/TTC/TTCviSpec.pdf).11

Figure 71: Image of cabling for tuning a TTC system

Note: The question has come up if channel A and channel B are correctly cabled in the picture above.12

Here is a reply from the TTC expert (Sophie Baron):13

A “good” configuration when channel B is not used is indeed to have it tied to “1”. And14

it is right that having Channel B connected to OUTPUT B gives a static “1” on channel B.15

However, the termination scheme at the TTCex inputs keeps as well unconnected channel16

inputs (both B and A) to “1” by default (it is negative ECL logic, and the Vin is at -2.08V17

by default). Therefore, both schemes could be used identically. One additional remark: of18

course, if you leave both A and B unconnected at the input of the TTCex, you will have19

both channels A and B to “1”, and this is not good as the TTCrx needs to see two different20

behaviours on A and B to be able to differentiate them (the rule is that the A-channel must21

not have more than 11 consecutive “1” whereas B can have any type of sequence).22

March 19, 2018 – 14:45 73

http://www.cern.ch/TTC/TTCviSpec.pdf


DRAFT

This description can be broken down into the following points:23

1. Connect the TTCvi A/ecl CHANNEL OUT output to the TTCvx A/ecl CHANNEL IN input via24

a Y-adapter.25

2. Connect, via a Y-adapter, one of the TTCvx CLOCK OUT/ecl outputs to the TTCvi CLOCK IN
bc/ecl input. Check that the BC_EXT indicator is lit on the TTCvi as shown below. The TTCvx
internal clock may be used.

26

3. Set the TTCvi trigger mode (= 5) to random at the highest rate (100 kHz) and disable the27

event/orbit/trigger-type transfers. In order to do this write 0x7005 to the D16 VMEbus CSR128

register at offset 0x80. This can be done easily for vme_rcc_test. Note: The A24 base address of29

the TTCvi in the CERN reference system in TBED is 0x555500. This should light up the TTCvi30

A-Ch yellow indicator and the A/ecl CHANNEL OUT output should now carry 25 ns long trigger31

pulses.32

March 19, 2018 – 14:45 74



DRAFT

4. With an oscilloscope look at the TTCvx Channel-A input in respect to the clock output, as shown
below.

33

5. Adjust the TTCvi BC delay switch such that the rising edges of the Channel-A pulses occur within34

4 ns before to 2 ns after the rising edges of the clock signal.35

6. Setting the delay switch in position 2 and using 1 ns long interconnecting cables for the clock and36

the A and B channels corresponds to the above mentioned timing criteria. Note of MJ: Even though37

I used 1 ns cables, I had to set the switch to position 5 (see picture above) in order to meet the38

requirement of step 5.39

A.2 Guide to TTC Channel B40

The following section describes the structure of the TTC ’B channel’ data stream, and how it may be41

decoded and operated by users. The information in this section is provided courtesy of Alessandra42

Camplani and the LAr group.43

The data stream arriving through TTC B channel can be of two types: short broadcast commands or long44

individually-addressed commands/data.45

Short broadcast commands are used to deliver messages to all TTC destinations in the system, while long46

individually-addressed commands/data are used to transmit user-defined data and instructions over the47

network to specific addresses and sub-addresses. These two types of command have different dedicated48

frame formats, as shown in Figure 72:49

The difference between the two command types can be illustrated with the example below. When not in50

use the B channel IDLE state is set to 1. When a sequence of commands is sent, the data transmission51

state changes from 1 to 0. After the first zero received it is possible to distinguish between short broadcast52

and long address commands: if the second bit in the stream is a 0 then the command is a short broadcast,53

if it is a 1 then the command is of long address type.54

March 19, 2018 – 14:45 75



DRAFT

Figure 72: Frame formats for the B channel commands.

IDLE=11111111111155

Short Broadcast, 15 bits:56

00TTDDDDEBHHHHH:57

T= test command, 2 bits58

D= Command/Data, 4 bits59

E= Event Counter Reset, 1 bit60

B= Bunch Counter Reset, 1 bit61

H= Hamming Code, 5 bits62

Long Addressed, 41 bits63

01AAAAAAAAAAAAAAE1SSSSSSSSDDDDDDDDHHHHHHH:64

A= TTCrx address, 14 bits65

E= internal(0)/External(1), 1 bit66

S= SubAddress, 8 bits67

D= Data, 8 bits68

H= Hamming Code, 7 bits69

The short broadcast command type is used to send two important values: the Bunch Counter Reset (BCR)70

and the Event Counter Reset (ECR).71

The BCR is used to reset the bunch crossing counter, which is increased every clock cycle on the 4072

MHz clock. This is a 12-bit counter, also called BCID. A BCR command is sent roughly every 89 µs,73

corresponding to the time that a bunch needs to do an entire circuit of the LHC. During this time the BCID74

counter reach its maximum value, 3564 counts.75

The ECR is used to increase the event reset counter. The periodicity of this reset is decided by each76

experiment, with ATLAS having it set to 5 seconds. The event reset counter combined with the L1A77

counter gives the Extended L1ID (EVID). This is a 32-bit value consisting the L1A counter in the lower78

24 bits, and the event reset counter in the upper 8. Every time that an ECR is received the upper counter79

is increased by 1 and the lower part is reset to zero. Every time that a L1A is received the lower part is80

increased by 1.81

BCID and EVID values are used as a label for the data accepted by the trigger.82

The long address command type is used to transport another important value: the Trigger Type (TType).83

Each L1A transmission is followed, with variable latency, by an 8-bit TType word. This word is generated84

March 19, 2018 – 14:45 76



DRAFT

inside the LVL1 Central Trigger Processor (CTP) and distributed from the CTP to the TTCvi modules for85

each of the TTC zones in the experiment via the corresponding LTP modules.86

The presence of a Trigger Type within long address commands is announced by a sub-address (8 bits) set87

to 0.88

Sub-Trigger physics ALFA FTK LAr demonstrator Muons Calorimeter ZeroBias Random

Bit 7 6 5 4 3 2 1 0

Table 7: Trigger type 8-bit word: Each bit represent the sub-detector which fired the trigger or the data type.

As shown in Table 7, each bit has a specific role. In calibration mode, bits 0 to 2 can be used to distinguish89

between up to eight different possible types of calibration trigger within each sub-detector. Bits 3 to 6 are90

used to indicate which sub-detector or subsystem fired the trigger. Bit 7 represents physics trigger-mode91

when set to 1, and calibration mode when set to 0.92

A.2.1 B channel decoding firmware93

An effort is under way to provide a centrally maintained firmware module to decode TTC B-channel94

data. In the short term, users are advised to refer to a version produced for LAr front-ends by Alessandra95

Camplani. The module code can be found in gitlab:96

https://gitlab.cern.ch/atlas-lar-ldpb-firmware/LATOME-ttc97

The code itself is in the folder code_ttc and the files dedicated to TType decoding are: Bchan_top.vhd,98

SMdecoding_cnt .vhd and TT ype_decoding. The simulations for this specific part can be found in the99

simulation folder. Here there is a testbench for the Bchan_top entity and another one forTT ype_decoding100

entity.101

Development of this module is ongoing, with the latome_ttc branch being actively maintained and kept102

up-to-date.103

A.2.2 Channel B decoding software104

In order to test channel decoding, it is recommended that users employ the menuRCDTtcvi application,105

provided as part of the ATLAS TDAQ software release. Within the application select ’BGO menu’ and106

then option 13 ’send asynchronous command’. From here it should be possible to select either a short107

of long command. In the case of a short command simply enter the data word to be sent. For a long108

command enter an address 0 (for broadcast), 0 for internal registers, subaddress 0 for trigger type, and the109

data word to be sent.110

A.3 Useful documents111

You may find additional useful information in this document from the ATLAS LAr group:112

https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/community/113

CPPM_MiniFELIX_tests_results_and_TTC_system_experience.pdf114

March 19, 2018 – 14:45 77

https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/community/CPPM_MiniFELIX_tests_results_and_TTC_system_experience.pdf
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/community/CPPM_MiniFELIX_tests_results_and_TTC_system_experience.pdf
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/community/CPPM_MiniFELIX_tests_results_and_TTC_system_experience.pdf


DRAFT

B BNL-711 Technical Information115

This appendix will collect technical information for the BNL-711 board which may be relevant to user116

test stand installations.117

Figure 73: The BNL-711 V1.5 board.

B.1 User Jumper Map and Functional Specification118

The BNL-711 provides a number of I/O connectivity options. These are selectable by modifying the119

position of the user jumpers shown by the red boxes in Figure 73. A specific map of the relative position120

and name of each jumper is presented in Figure 74. A detailed description of the function of each jumper,121

and to which board configuration options it relates, is available in the sections below.122

Figure 74: BNL-711 V1.5 User Jumper Map

March 19, 2018 – 14:45 78



DRAFT

B.1.1 J1123

For uC configuration with 6-pin ISP programmer.124

1 MISO
2 VTG-SYS25
3 SCK
4 MOSI
5 RSTn
6 GND

125

B.1.2 J2126

PRSNT selection.127

1 PRSNT_FPGA
2 PRSNT
3 PRSNT1

128

2&3 are connected.129

B.1.3 J8130

Backup I2C/SMB connector.131

1 SYS33
2 PCIE_SCL
3 GND
4 PCIE_SDA

132

B.1.4 JMP1133

Connect FPGA_PROG_B to the uC_FPGA_PROG_B (PC5). Connected by default.134

1 uC_FPGA_PROG_B
2 FPGA_PROG_B

135

March 19, 2018 – 14:45 79



DRAFT

B.2 JMP2136

Connect FPGA_INIT_B to the uC_FPGA_INIT_B (PD2). Connected by default.137

1 uC_FPGA_INIT_B
2 FPGA_INIT_B

138

B.2.1 JMP3139

WAKE_N from PCIe to FPGA. NOT connected by default.140

1 PCIE_WAKE_N
2 PCIE_WAKE_N_FPGA

141

B.2.2 JMPR1 & JMPR2142

JMPR1: FLASH_A25 selection.143

1 GND
2 uc_FLASH_A25
3 SYS25

144

JMPR2: FLASH_A26 selection.145

1 GND
2 uc_FLASH_A26
3 SYS25

146

The FPGA firmware has the highest priority to set FLASH_A25 and FLASH_A26. The Jumpers have147

lowest priority.148

If uC is used, when uC_FLASH_A is ’1’, the FLASH_A will be ’0’; when uC_FLASH_A is ’0’, the149

FLASH_A will be ’1’.150

If Jumpers are used, when it is connected ’1’, the FLASH_A will be ’0’; when it is connected ’0’, the151

FLASH_A will be ’1’.152

As default, the first Flash partition can be used, then 2&3 are connected.153

March 19, 2018 – 14:45 80



DRAFT

B.3 MiniPOD Connectivity Map154

The BNL-711 hosts 4 MiniPOD Tx/Rx Transceiver pairs, located in two banks either side of the FPGA,155

as shown in Figure 73. The transceiver sockets have a specific logical order, presented in Figure 75. Users156

should connect their optics according to this map to ensure the correct link order is preserved.157

FPGA

Pair 1

Pair 2

Pair 3

Pair 4

814 Tx

814 Tx

814 Tx

814 Tx

824 Rx

824 Rx

824 Rx

824 Rx

Figure 75: BNL-711 MiniPOD Connectivity Map.

March 19, 2018 – 14:45 81



DRAFT

C Guide to FELIX Data Structures158

• Data buffered in the FPGA per E-link or per FULL mode link and transferred under DMA control159

• Fixed block size of 1 kB160

• The blocks are transferred into a contiguous area, functioning as a161

• circular buffer, in the main memory of the PC.162

• TheDMAruns continuously, thereby eliminatingDMAsetup overheads and achieving high through-163

put (about 12 GB/s for the 16-lane interface of the FLX-711).164

• Event fragments or other types of data arriving via the FE links are referred to as “chunks” and can165

have an arbitrary size.166

• 1 kB blocks of E-links or FULL mode links are multiplexed into a single stream.167

Figure 76: FELIX block structure

March 19, 2018 – 14:45 82



DRAFT

V1.3 7‐nov‐17

From FPGA to PC

Block header as u_long (32‐bit word) read from memory

Data is transferred 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

as 1 kByte blocks

with this block header

Block header as u_char (bytes) read from memory
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Block header as u_int_16_t (u_short) (16‐bit words) read from memory
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Sub‐chunk trailer read as u_int_16_t (u_short) (16‐bit word) from memory 

are organized as chunks T E C on a 16‐bit boundary,

that may extend over  0 0 0 <‐ signals fill pattern caused by timeout, all other bits are also 0 if the number of bytes is odd,

several blocks. Each 0 0 1 <‐ first part of chunk consisting of more than one part  a padding byte is added

chunk has a 16‐bit trailer, 0 1 0 <‐ last part of chunk consisting of more than one part  at the end

if it extends over more  0 1 1 <‐chunk consisting of one part

than one block then 1 0 0 <‐not first and not last part of chunk consisting of more than one part

each part of the chunk 1 0 1 <‐ E‐link timeout

("sub‐chunks") has 1 1 0 <‐ reserved

its own 16‐bit trailer 1 1 1 <‐ out of band

T: Truncation flag, 1 if chunk was truncated

E: Error flag, 1 if an error occurred

C: CRC20 Error (FULL mode) Reserved in GBT mode

Out of band trailers start 1 1 1 0 0 0 0 0 0 1 0 1 1 1 0 0 Indicates that the frontend is in busy state for the given Full mode link 0xE05C

width "111", but the other

fields are defined here, 

the fields T, E, C and 

length are undefined.

Internal chunk header as u_char (bytes) read from memory

byte 0 byte 1 b byte 2 byte 3

Internal header of chunk 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

payload as loaded in

emulator memory in .bit  msb: most significant bits

files. This payload can be byte 4 byte 5 byte 6 byte 7 lsb: least significant bits

replaced by the  7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

elinkconfig program

Words read as u_long (32‐bit word) read from memory

Proposal for TTC 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

information ("L1AInfo")

output via dedicated

 E‐link as chunk payload, 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Phase‐II compatible,

FMT=0x1 for format shown
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Words read as u_long (32‐bit word) read from memory

Proposal for TTC 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

information for testing,

emulated using 

emulator memory 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

L1ID typically about 0 .. 25

Data is transferred 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

as 32 byte eom

messages with a 2‐byte

header and a 30‐byte eom: 1 if last part of message

payload length: count of 2 byte words

Block header

L0ID

reservedtrigger type

Sequence numberE‐group E‐path GBT‐high

0xab 0xcdSequence number GBT E‐group E‐path

E‐group E‐path

FMT length (20) BCIDreserved

TTC: L1Ainfo

0 length msb length lsb

GBT‐low

0xab 0xcd Sequence number GBT

Out of band trailers (implemented in Full mode only)

Payloads of the blocks

extended L1ID L1ID

FMT length (8) reserved BCID

extended L1ID L1ID

orbit

Sub‐chunk trailer

Default emulator chunk payload

L1ID msb

L1ID lsb E‐link width

sub‐chunk length in bytesType

0xaa0xbb

0xaa

0xab0xcd

GBT E‐Group E‐path length

From PC to FPGA

Figure 77: List of FELIX Data Structures

March 19, 2018 – 14:45 83



DRAFT

D Guide to Using FELIX with GBT-SCA168

This appendix is included with thanks to Paris Moschovakos and the DCS team.169

D.1 Introduction170

The Slow Control Adapter (GBT-SCA)ASIC is part of the GBT chip-set and it is dedicated for the slow171

control of the front-end boards. It features several sub-devices that facilitate both Frornt end configuration172

and monitoring environmental variables (voltages, temperatures, etc.) on and around the detector. The173

sub-devices are ADCs, DACs, general purpose IO, and controllers for I2C, SPI and JTAG. An SCA is174

connected to a GBTx via any 2-bit E-link. The E-link must be operated in 40MHz DDR mode (80Mb/s)175

with HDLC encoding. Up to 41 SCAs can be potentially connected to a single GBTx when FELIX is176

configured accordingly.177

Figure 78: GBT frame paths and e-links

D.2 Typical test setup178

A typical test setup consists of a board that houses a GBTx that is connected to FELIX via an optical fibre179

and to a GBT-SCA ASIC via an e-link.180

A Versatile Link Demo Board (VLDB) (https://espace.cern.ch/GBT-Project/VLDB/default.181

aspx) was designed that can be directly plugged into a FELIX board and hosts both a GBTx and an SCA.182

(The VLDB demo board can be procured from the GBT group.) Such a setup is shown in Figure 79.183

To simplify the evaluation of the setup, the VLDB possesses two LEDs which are connected to two general184

purpose outputs of the SCA. This can be used to validate the functionality all the way from the FELIX185

March 19, 2018 – 14:45 84

https://espace.cern.ch/GBT-Project/VLDB/default.aspx
https://espace.cern.ch/GBT-Project/VLDB/default.aspx
https://espace.cern.ch/GBT-Project/VLDB/default.aspx


DRAFT

Figure 79: Evaluation setup with an SCA on VLDB. SCA and GBTx are interconnected externally in VLDB via
mini-HDMI connectors J32 (PRIMARY) and J33 (SCA PORT)

host to the SCA itself. In order to do that, the “fec” tool, of the ftools family as mentioned in Section 6.6.3,186

can be used.187

The following line requests from the SCA at <gbt_link_number> where the VLDB is connected, to blink188

its LED 100 times.189

$ fec �G <gbt_link_number> -r 100 �x 18 o190

D.3 Operation to set up an SCA e-link191

A configuration procedure is needed both for FELIX and the GBTx itself. The configuration is mostly a192

description of the setup at hand and the mapping of the e-links that are connected. There are also some193

setup specific parameters to be configured.194

In the case where the SCA is connected to the dedicated EC e-link, one should just check that it is enabled195

via the elinkconfig GUI. That specific e-link is pre-configured with the appropriate HDLC SCA encoding196

and corresponding bit endianness and can be used directly for any SCA.197

In the special case that one wants to use one of the data path e-links, one should configure FELIX via198

elinkconfig accordingly. SCA uses HDLC encoding instead of the typical 8b/10b which is the standard199

for the data e-links as can be seen in Figure 81. Moreover, the bit orientation is different than the other200

data e-links. By selecting the HDLC format in the drop-down menu, elinkconfig takes care both for the201

orientation and the encoding, indicating that an SCA is connected to that specific GBT group and path.202

D.4 Low level operations with fec tools to configure and establish basic communication203

The fec tool, as described in Section 6.6.3, is the dedicated “ftool” to use for the SCA EC e-link handling.204

A number of operations to the various SCA interfaces is possible using its arguments. Depending on your205

setup please check the full list of possible operations at Figure 57.206

March 19, 2018 – 14:45 85



DRAFT

Figure 80: SCA EC e-link

D.5 The integrated production system – Introduction207

The on-detector DCS system that handles the slow control traffic and the configuration of the front-end208

electronics, based on the GBT-SCA, is part of FELIX ecosystem and closely integrated into it. A proposed209

solution is presented on the following scheme. The slow control and configuration traffic, unlike physics210

data, has different requirements in terms of throughput, latency, availability and reliability.211

FELIX DCS is the software that handles the SCA traffic arriving at FELIX card. Towards the FELIX212

clients it is based on the middleware Open Platform Communications Unified Architecture (OPC UA,213

of the OPC foundation, (https://opcfoundation.org/) which is an industry standard for secure and214

reliable exchange of data in industrial automation and other controls-related areas.215

The server/client architecture that the platform uses, allows for different purpose clients to be served by216

a single server per FELIX host. The data flow to/from the ATLAS control room, not only serves the217

control and monitoring data of the detectors’ conditions but also implements the configuration path of the218

March 19, 2018 – 14:45 86

https://opcfoundation.org/


DRAFT

Figure 81: SCA HDLC encoding

on-detectors electronics and their initialization for data taking or calibration. In addition, system experts219

can monitor the status of the employed technology and get statistics and other information in order to220

diagnose the various system layers.221

All those requirements potentially imply many different OPC UA clients that would like to receive SCA222

data from the setup at the same time. The chosen OPC UA architecture will ensure the reliable and223

seamless data delivery and the compatible integration into the current DCS systems. This means that OPC224

clients in both DCS and a detector configuration server can communicate with the same SCA ASIC and225

the OPC server will correctly arbitrate their access.226

March 19, 2018 – 14:45 87



DRAFT

Figure 82: OPC UA for GBT-SCA Architecture

D.6 The SCA software (SCA-SW), its demonstrators and the OPC-UA SCA Server227

D.6.1 SCA-SW library228

Figure 83: SCA-SW Library

A software library called SCA-SW has been designed and implemented. Its purpose is to provide software229

support for the SCA chip by providing a high-level programming interface (for example, a function that230

invokes an SCA ADC conversion and returns the converted voltage as a float number).231

March 19, 2018 – 14:45 88



DRAFT

The following key decisions have accompanied the design process:232

• The library should be a modular piece of software supporting SCA chip(s) no matter how it233

is physically connected to the host system. Therefore the core part of the library operates on234

protocol data units of the SCA chip (here picture to SCA frame format), which normally would be235

encapsulated in the HDLC protocol. There are a number of predefined “HDLC backends” which236

are services to send such encapsulated SCA requests and receive replies.237

• The library should scale from the simplest use cases up to scenarios of thousands of SCAs.238

• The library should be able to profit from concurrency features of the host system, including mutli-239

core and multi-threaded operation.240

• The library should be written in a chosen version of the standard C++ dialect.241

• The library should be designed with reliability and robustness as a key design choice because it242

would serve critical, 24/7 communication.243

The out-of-the-box SCA-SW, as of October 2017, includes among its backends the NetIO backend which244

enables seamless communication with the FELIX software ecosystem, and particularly with the felixcore245

application which can route the traffic between an application based on SCA-SW and any SCA connected246

through fibers to chosen FELIX machine.247

Being backend-agnostic, the addressing scheme shown in Table 8 has been chosen for the library to identify248

a given SCA in case of NetIO.

Table 8: Addressing scheme
Backend
type Discovery variant SCA address to use

NetIO FELIX mapper
not used

simple-NetIO://direct/hostname/port1/port2/elink
Where:

1. Hostname is a hostname of the FELIX machine handling given
traffic

2. Port1 is theTCP/IP port onwhich FELIXwill receive and transport
further through fibers to the SCA. Typically it is 12340.

3. Port2 is the TCP/IP port onwhich FELIXwill distribute the replies
of the SCA chip. Typically it is 12345.

4. E-link is a two-digit hexadecimal E-link identifier. For example,
3F would mean the EC link of the first fibre of the FLX card. You
can use “felink” tool to compute the E-link identifier. Note that
neither decimal format nor prefix/suffix are supported (e.g. it’s
illegal to put 0x3f instead of 3F).

FELIX mapper
used

To be defined later

249

March 19, 2018 – 14:45 89



DRAFT

The SCA-SW provides a number of demonstrators for various SCA components, like a demonstrator to250

print out ADC conversion results, program a VMM3 chip through SPI, etc.251

D.6.2 SCA OPC-UA server252

The provided OPC-UA server implementation for the SCA is based on the SCA-SW (explained above)253

intending to profit from all features of the SCA-SW library and providing a high-level and user-friendly254

OPC-UA address space to OPC-UA clients.255

The OPC-UA server has been designed and implemented using the quasar framework (see https:256

//github.com/quasar-team/quasar). Its design is presented in Figure 84.257

Figure 84: The quasar design diagram of the OPC-UA server for the SCA.

As of January 2018, the server supports the following functionality:258

• Communication with any number of SCAs, through NetIO or any other HDLC backend. Each SCA259

is identified in its address-space by a name, and its unique 24-bit “SCA identifier” which is written260

by the chip manufacturer in the SCA silicon. The identifier is read using the SCA-SW library when261

a connection to given SCA is opened.262

• Up to 32 ADC channels per SCA which are polled with the configured conversion frequency. Note263

that channel 31 has no external connection; it is connected to the on-chip temperature sensor that264

monitors the SCA temperature.265

March 19, 2018 – 14:45 90

https://github.com/quasar-team/quasar
https://github.com/quasar-team/quasar
https://github.com/quasar-team/quasar


DRAFT

• Up to 32 General Purpose I/O pins per SCA. Each pin can be configured as an input or output266

through the server config file.267

• Up to 4 DACs per SCA; the DACs take the desired voltage as a float (0..1V).268

• Up to 8 SPI slaves per SCA. The SPI configuration (like speed, phase, mode . . . ) can be configured269

in the server config file.270

• Up to 16 independent configurable I2C master controllers271

The JTAG controller is in-progress and not yet available as of January 2018.272

D.7 References273

1. SCA-SW gitlab repo274

(https://gitlab.cern.ch/atlas-dcs-common-software/ScaSoftware)275

2. Twiki for SCA-SW end-users,276

(https://twiki.cern.ch/twiki/bin/viewauth/Atlas/AtlasGbtScaOpcUa)277

3. Twiki for SCA-SW developers278

(https://twiki.cern.ch/twiki/bin/viewauth/Atlas/ScaOpcUaUserGuide)279

4. OPC-UA SCA gitlab280

(https://gitlab.cern.ch/atlas-dcs-common-software/ScaSoftware)281

March 19, 2018 – 14:45 91

https://gitlab.cern.ch/atlas-dcs-common-software/ScaSoftware
https://twiki.cern.ch/twiki/bin/viewauth/Atlas/AtlasGbtScaOpcUa
https://twiki.cern.ch/twiki/bin/viewauth/Atlas/ScaOpcUaUserGuide
https://gitlab.cern.ch/atlas-dcs-common-software/ScaSoftware


DRAFT

References282

[1] CERN, GBT & Versatile Link,283

url: https://ep-ese.web.cern.ch/content/gbt-versatile-link.284

[2] F Vasey et al., The Versatile Link common project: feasibility report,285

Journal of Instrumentation 7.01 (2012) C01075,286

url: http://stacks.iop.org/1748-0221/7/i=01/a=C01075.287

[3] CERN GBT Project, The GBTx Manual, V0.14 (2016),288

url: https://espace.cern.ch/GBT-Project/GBTX/Manuals/gbtxManual.pdf.289

[4] GBT Module for the FELIX Project,290

url: https://twiki.cern.ch/twiki/pub/Atlas/GBT2LAN/FELIX_GBT_MANUAL.pdf.291

[5] ATLAS Felix Group, Specifications for the FELIX FULL mode link, url: https://atlas-292

project-felix.web.cern.ch/atlas-project-felix/user/docs/FullMode.pdf.293

[6] Xilinx, Xilinx VC709 Development Kit,294

url: http://www.xilinx.com/products/boards-and-kits/dk-v7-vc709-g.html.295

[7] Supermicro, Supermicro X10SRA-F Motherboard Model Specification, 2016,296

url: http://www.supermicro.nl/products/motherboard/Xeon/C600/X10SRA-F.cfm.297

[8] CERN TTC FMC project, url: http://www.ohwr.org/projects/optical-cdr-fmc/wiki.298

[9] TTC group, CERN TTC homepage (), url: http://ttc.web.cern.ch/TTC.299

[10] Analog Devices Inc., ADN2814: Continuous Rate 10Mb/s to 675Mb/s Clock and Data Recovery300

IC with Integrated Limiting Amp,301

url: http://www.analog.com/static/imported-files/data_sheets/ADN2814.pdf.302

[11] Silicon Labs Inc., Si5345/44/42 Rev D Data Sheet – 10-Channel, Any-Frequency, Any-Output303

Jitter Attenuator/ Clock Multiplier,304

url: http://www.silabs.com/SupportDocuments/TechnicalDocs/Si5345-44-42-D-305

DataSheet.pdf.306

[12] Silicon Labs Inc.,307

Si5324 Data Sheet – Any-Frequency, Any-Output Precision Clock Multiplier / Jitter Attenuator,308

url: https://www.silabs.com/documents/public/data-sheets/Si5324.pdf.309

[13] Xilinx, Xilinx Vivado Design Suite, 2016,310

url: https://www.xilinx.com/products/design-tools/vivado.html.311

[14] Linear Technology, LTC2991 Data Sheet – Octal I2C Voltage, Current, and Temperature Monitor,312

url: http://cds.linear.com/docs/en/datasheet/2991ff.pdf.313

[15] The Versatile Link Developers, The Versatile Link Common Project, 2008,314

url: https://espace.cern.ch/project-versatile-link/public/default.aspx.315

[16] CERN GBT-FPGA project,316

url: https://espace.cern.ch/GBT-Project/GBT-FPGA/default.aspx.317

March 19, 2018 – 14:45 92

https://ep-ese.web.cern.ch/content/gbt-versatile-link
http://stacks.iop.org/1748-0221/7/i=01/a=C01075
https://espace.cern.ch/GBT-Project/GBTX/Manuals/gbtxManual.pdf
https://twiki.cern.ch/twiki/pub/Atlas/GBT2LAN/FELIX_GBT_MANUAL.pdf
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/docs/FullMode.pdf
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/docs/FullMode.pdf
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/docs/FullMode.pdf
http://www.xilinx.com/products/boards-and-kits/dk-v7-vc709-g.html
http://www.supermicro.nl/products/motherboard/Xeon/C600/X10SRA-F.cfm
http://www.ohwr.org/projects/optical-cdr-fmc/wiki
http://ttc.web.cern.ch/TTC
http://www.analog.com/static/imported-files/data_sheets/ADN2814.pdf
http://www.silabs.com/Support Documents/TechnicalDocs/Si5345-44-42-D-DataSheet.pdf
http://www.silabs.com/Support Documents/TechnicalDocs/Si5345-44-42-D-DataSheet.pdf
http://www.silabs.com/Support Documents/TechnicalDocs/Si5345-44-42-D-DataSheet.pdf
https://www.silabs.com/documents/public/data-sheets/Si5324.pdf
https://www.xilinx.com/products/design-tools/vivado.html
http://cds.linear.com/docs/en/datasheet/2991ff.pdf
https://espace.cern.ch/project-versatile-link/public/default.aspx
https://espace.cern.ch/GBT-Project/GBT-FPGA/default.aspx

	Overview
	Document Compatibility

	Introduction to FELIX
	FELIX Variants and Functionality
	Gigabit Transceiver (GBT) and the Versatile Link
	FULL Mode
	Propagation of ATLAS TTC Information


	Hardware Requirements and Setup
	Recommended Hardware Platforms
	FPGA I/O Hardware: VC-709
	FPGA I/O Hardware: BNL-711
	FELIX Host Systems

	Installation of VC-709
	Installation of BNL-711
	Connecting to an existing TTC system
	VC-709 Only: TTCfxV3 Overview and Installation
	Connecting TTC and BUSY

	Configuring FELIX Clock
	Clock Source Selection
	TTC Clock Recovery: ADN2814
	Clock Jitter Cleaning

	Connecting and Initialising Optical Links
	Physical Link Layer Status: VC-709
	Physical Link Layer Status: BNL-711
	Logical Link Layer Initialisation


	Firmware Releases and Programming
	Firmware Distribution Protocol
	Release Announcements
	Firmware Distribution Site

	Firmware Programming
	JTAG Connectivity
	Setting up the Vivado™ Suite
	Programming the FPGA Directly
	Programming the FLASH ROM (VC-709)
	Programming the FLASH ROM (BNL-711)
	Enabling new FPGA Configuration
	PCIe hotplug procedure



	Software Distribution and Installation
	Software Distribution Protocol
	Pre-requisites
	Release Announcements
	Release Distribution Site
	FELIX Driver
	FELIX Software Suite


	Software Installation Instructions
	Driver RPM Installation Instructions
	DKMS
	Removal of Existing Driver Installations
	Installation of New Driver

	Installation of FELIX Software Suite


	Basic Tools
	E-link Configuration with elinkconfig
	Global Panel
	Data Path Fan Out Selectors: TH_FO and FH_FO
	Data Timeout Control Dialog
	Clock Source Selector Dialog

	To-Host Panel
	From-Host Panel
	Link and Data Generator Configuration Upload Dialog
	Guide to Valid E-link Configurations
	Guide to common configuration tasks
	Working with E-link configurations stored in files
	Modifying the existing E-link configuration on a FELIX card without a file
	Configure L1AInfo E-links to host
	Configure TTC E-links from host
	Configure SCA E-links to/from host


	Low Level Tools (System Status Monitoring & Control)
	flx-info
	flx-config
	flx-init
	flx-reset
	flx-monitor

	Dataflow from Front-end via FELIX to FELIX host PC
	fdaq
	Running DAQ Test with External Data Source
	Running DAQ Test with Internal Data Generation


	Dataflow from FELIX Host PC to Front-end Systems via FELIX
	fupload

	FELIX Configuration Tools
	felink
	Finding E-link ID from GBT/E-group/E-path of GBT/Bit address/width

	fereverse
	fgpolar
	feconf
	femu
	feto
	fflash

	General Debugging Tools
	fcheck
	fedump
	fec
	fuptest
	fplayback

	Remote Hardware Command and Configuration Tools
	fic
	fgconf


	Felixcore Application and NetIO
	Operational Principles
	Configuration
	Monitoring
	FelixCore Native Monitoring
	Monitoring with felix-web-mon
	Compilation
	Usage


	FelixCore Examples
	Tests without an FLX Card
	Tests with an FLX Card

	Connecting to a felixcore instance using NetIO tools
	Connecting to a felixcore instance using FATCAT
	Discovering E-links with the FELIX BUS system
	Debugging
	Using the FelixCore event tracing framework


	Resources for Front-End Developers
	FELIX Firmware Modules for Front-end Users
	Downloading Firmware Source
	GBT Test Modules
	GBT-FPGA
	GBTx

	FULL Mode Test Modules
	Link Layer Tests
	Protocol Tests


	General Hints and Tips
	Known Technical Requirements for FELIX Communication
	Examples of Design Best Practice based on Current Experience
	Frequently Asked Questions


	Appendices
	Setting up a TTC System for use with FELIX
	Tuning a TTC system
	Guide to TTC ChannelB
	B channel decoding firmware
	Channel B decoding software

	Useful documents

	BNL-711 Technical Information
	User Jumper Map and Functional Specification
	J1
	J2
	J8
	JMP1

	JMP2
	JMP3
	JMPR1 & JMPR2

	MiniPOD Connectivity Map

	Guide to FELIX Data Structures
	Guide to Using FELIX with GBT-SCA
	Introduction
	Typical test setup
	Operation to set up an SCA e-link
	Low level operations with fec tools to configure and establish basic communication
	The integrated production system – Introduction
	The SCA software (SCA-SW), its demonstrators and the OPC-UA SCA Server
	SCA-SW library
	SCA OPC-UA server

	References




