ATLAS NOTE
ATLAS-INT-2017-XXX 7%

March 19, 2018

ner-»

Draft version 0.84

> FELIX User Manual

3 ATLAS FELIX Group

© 2018 CERN for the benefit of the ATLAS Collaboration.
4 Reproduction of this article or parts of it is allowed as specified in the CC-BY-3.0 license.

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

45

46

Contents

1 Overview

1.1 Document Compatibility

Introduction to FELIX

2.1 FELIX Variants and Functionality
2.1.1 Gigabit Transceiver (GBT) and the Versatile Link
2.1.2 FULL Mode
2.1.3 Propagation of ATLAS TTC Information

Hardware Requirements and Setup

3.1 Recommended Hardware Platforms
3.1.1 FPGA I/O Hardware: VC-709
3.1.2 FPGA I/O Hardware: BNL-711
3.1.3 FELIX Host Systems

3.2 Installation of VC-709

3.3 Installation of BNL-711

3.4 Connecting to an existing TTC system
3.4.1 VC-709 Only: TTCfx V3 Overview and Installation
3.4.2 Connecting TTC and BUSY

3.5 Configuring FELIX Clock
3.5.1 Clock Source Selection
3.5.2 TTC Clock Recovery: ADN2814
3.5.3 Clock Jitter Cleaning

3.6 Connecting and Initialising Optical Links
3.6.1 Physical Link Layer Status: VC-709
3.6.2 Physical Link Layer Status: BNL-711
3.6.3 Logical Link Layer Initialisation

Firmware Releases and Programming
4.1 Firmware Distribution Protocol
4.1.1 Release Announcements
4.1.2 Firmware Distribution Site
4.2 Firmware Programming
4.2.1 JTAG Connectivity
4.2.2 Setting up the Vivado™Suite
4.2.3 Programming the FPGA Directly
4.2.4 Programming the FLASH ROM (VC-709)
4.2.5 Programming the FLASH ROM (BNL-711)
4.2.6 Enabling new FPGA Configuration
4.2.6.1 PCle hotplug procedure

5 Software Distribution and Installation

5.1 Software Distribution Protocol
5.1.1 Pre-requisites
5.1.2 Release Announcements

=

O 0 OO0 0 R

10

10
10
10
11
11
12
12
12
13
13
14
14
15
15
15
16

17
17
17
17
17
17
18
19
21
21
24
24

25
25
25
25

47

48

49

51

52

53

54

55

56

58

59

60

61

62

63

64

65

66

67

68

69

70

7

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

920

91

92

DRAFT

5.2

5.1.3 Release Distribution Site
5.1.3.1 FELIX Driver
5.1.3.2 FELIX Software Suite
Software Installation Instructions
5.2.1 Driver RPM Installation Instructions
5.2.1.1 DKMS
5.2.1.2 Removal of Existing Driver Installations
5.2.1.3 Installation of New Driver
5.2.2 Installation of FELIX Software Suite

6 Basic Tools

6.1

6.2

6.3

6.4

6.5

E-link Configuration with elinkconfig
6.1.1 Global Panel
6.1.1.1 Data Path Fan Out Selectors: TH_FO and FH_FO
6.1.1.2 Data Timeout Control Dialog
6.1.1.3 Clock Source Selector Dialog
6.1.2 To-Host Panel
6.1.3 From-Host Panel
6.1.4 Link and Data Generator Configuration Upload Dialog
6.1.5 Guide to Valid E-link Configurations
6.1.6 Guide to common configuration tasks
6.1.6.1 Working with E-link configurations stored in files
6.1.6.2 Modifying the existing E-link configuration on a FELIX card without a
file
6.1.6.3 Configure L1Alnfo E-links to host
6.1.6.4 Configure TTC E-links from host
6.1.6.5 Configure SCA E-links to/from host
Low Level Tools (System Status Monitoring & Control)

6.2.1 Aflx-info
6.2.2 flx-config
6.2.3 Aflx-init

6.2.4 flx-reset
6.2.5 flx-monitor
Dataflow from Front-end via FELIX to FELIX host PC
6.3.1 fdaq
6.3.1.1 Running DAQ Test with External Data Source
6.3.1.2 Running DAQ Test with Internal Data Generation
Dataflow from FELIX Host PC to Front-end Systems via FELIX
6.4.1 fupload
FELIX Configuration Tools
6.5.1 felink
6.5.1.1 Finding E-link ID from GBT/E-group/E-path of GBT/Bit address/width
6.5.2 fereverse
6.5.3 fgpolar

6.54 feconf
6.5.5 femu
6.5.6 feto

March 19, 2018 — 14:45

25
25
25
26
26
26
26
26
27

28
28
28
30
32
33
33
34
35
35
38
38

38
39
39
40
40
40
41
42
42
43
43
43
44
45
45
45
45
45
46
47
48
49
50
50

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

1

W

2

133

134

DRAFT

6.6

6.7

6.5.7 fllash

General Debugging Tools
6.6.1 fcheck

6.6.2 fedump

6.6.3 fec

6.6.4 fuptest

6.6.5 fplayback

Remote Hardware Command and Configuration Tools
6.7.1 fic

6.7.2 fgconf

7 Felixcore Application and NetlO

7.1
7.2
7.3

7.4

7.5
7.6
7.7
7.8

Operational Principles
Configuration
Monitoring
7.3.1 FelixCore Native Monitoring
7.3.2 Monitoring with felix-web-mon
7.3.2.1 Compilation
7.3.2.2 Usage
FelixCore Examples
7.4.1 Tests without an FLX Card
7.4.2 Tests with an FLX Card
Connecting to a felixcore instance using NetIO tools
Connecting to a felixcore instance using FATCAT
Discovering E-links with the FELIX BUS system
Debugging
7.8.1 Using the FelixCore event tracing framework

8 Resources for Front-End Developers

8.1 FELIX Firmware Modules for Front-end Users
8.1.1 Downloading Firmware Source
8.1.2 GBT Test Modules
8.1.2.1 GBT-FPGA
8.1.2.2 GBTx
8.1.3 FULL Mode Test Modules
8.1.3.1 Link Layer Tests
8.1.3.2 Protocol Tests
8.2 General Hints and Tips
8.2.1 Known Technical Requirements for FELIX Communication
8.2.2 Examples of Design Best Practice based on Current Experience
8.2.3 Frequently Asked Questions
Appendices

A Setting up a TTC System for use with FELIX
A.1 Tuning a TTC system

March 19, 2018 — 14:45

51
52
52
52
52
53
53
54
54
55

57
57
57
59
59
59
59
60
62
62
62
63
63
64
64
64

66
66
66
66
66
66
67
67
67
67
67
67
69

70

71
73

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

159

DRAFT

A.2 Guide to TTC Channel B
A.2.1 B channel decoding firmware
A.2.2 Channel B decoding software
A.3 Useful documents

B BNL-711 Technical Information

B.1 User Jumper Map and Functional Specification
B.1.1 J1
B.1.2 12
B.1.3 I8
B.1.4 JMPI

B.2 JMP2
B.2.1 JMP3
B.2.2 JMPRI & JMPR2

B.3 MiniPOD Connectivity Map

C Guide to FELIX Data Structures

D Guide to Using FELIX with GBT-SCA

D.1 Introduction

D.2 Typical test setup

D.3 Operation to set up an SCA e-link

D.4 Low level operations with fec tools to configure and establish basic communication

D.5 The integrated production system — Introduction

D.6 The SCA software (SCA-SW), its demonstrators and the OPC-UA SCA Server
D.6.1 SCA-SW library
D.6.2 SCA OPC-UA server

D.7 References

March 19, 2018 — 14:45

75
77
77
77

78
78
79
79
79
79
80
80
80
81

82

84
84
84
85
85
86
88
88
90
91

DRAFT

w0 Revision History

Revision Date

0.84
0.83
0.82
0.81

0.8

0.71
0.7

0.63
0.62
0.61

0.60

0.54
0.53

0.52
0.51
0.50
0.40
0.34
0.33
0.32

0.31

0.3

0.2

0.1
0.0

March 19, 2018 — 14:45

19-03-2018
06-03-2018
20-02-2018
15-02-2018

09-02-2018

22-11-2017
11-11-2017
26-10-2017
08-09-2017
08-09-2017

08-07-2017

08-05-2017
26-07-2017

26-07-2017
06-04-2017
06-04-2017
28-02-2017
20-01-2017
19-01-2017
30-11-2016

28-11-2016

10-11-2016

09-11-2016

08-11-2016
26-10-2016

Author(s)

L.Levinson
W. Panduro Vazquez
L. Levinson
W. Panduro Vazquez

W. Panduro Vazquez

L. Levinson

W. Panduro Vazquez
J. Schumacher

L. Levinson

W. Panduro Vazquez

W. Panduro Vazquez

J. Schumacher
L. Levinson

L. Levinson

W. Panduro Vazquez
J. Schumacher

W. Panduro Vazquez
W. Panduro Vazquez
W. Panduro Vazquez

L. Levinson

J. Vermeulen

W. Panduro Vazquez

W. Panduro Vazquez

W. Panduro Vazquez
W. Panduro Vazquez

Description

Clearer word-oriented format for L.1 Alnfo, Figure 30.
Fix TTC endianness (to little endian).

Review of SCA documentation.

Updates to TTC and BNL-711 appendices, fix broken link
to LAr user experience doc for TTC.

Integrate flx-mon docs, TTC B-channel docs, updates to
software for new release.

Correct GBT 8b/10b mode to “not implemented”.

Add SCA and TTC appendices, general review

Add debugging instructions for FelixCore.

Update TTC appendix.

Implement review comments and update software de-
scriptions.

Major update - material on BNL-711 and FULL mode,
rewrite of TTC and clock setup, update to ftools.

Add FelixBus chapter content.

Added TTC item to section: Guide for Front end design-
ers.

Added section: Guide for Front end designers.

Update firmware distribution details, other minor fixes.
Add Felixcore chapter content.

Overhaul release distribution information and contact in-
formation.

Minor tweaks and bug fixes.

Modity VC-709 USB programming instructions.

Added details on the SMA cables for the TTCfx and on
the TTCvx connection.

Small corrections, capitals in file names of figures now
consistent with actual filenames, typesetting under Linux
now OK

Integrate TTC guide as an appendix, continue filling in
basic tools guide, expand and organise content of user
testing guide

More detail to hardware guide, added firmware program-
ming guide

Added driver and software guide

created

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

DRAFT

1 Overview

This document is intended to support all users of the Phase-I FELIX readout infrastructure with installation,
maintenance and operation of their system. The document covers all aspects of the FELIX system from
recommended hardware to firmware and driver installation and maintenance. Finally the full suite of
FELIX software will be presented, including useful test tools leading up to the primary ’FelixCore’
dataflow application which is intended to form the backbone of all data taking sessions. For more
information users should consult the following locations for updates:

The FELIX users mailing list:

atlas-tdag-felix-users @cern.ch

The FELIX Project Website:
https://atlas-project-felix.web.cern.ch/atlas-project-felix

The FELIX release distribution site:
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/dist/

User support requests from users to the FELIX team should be made via the dedicated JIRA project:
https://its.cern.ch/jira/projects/FLXUSERS

Note: User support via SharePoint has been discontinued. Please report any broken links of obsolete
material to help improve the overall quality of our documentation

1.1 Document Compatibility

This document is continuously evolving alongside FELIX firmware and software. The table below will
keep track of the versions of each which should be considered covered by a given version of this manual.

Manual Version | GBT F/W Revision | FULL Mode F/W Revision | Software Release
0.8+ 5317+ 5327/5168 3.9.1

0.7 5317+ 5327/5168 3.8.1

0.61 5317 5327 3.8

0.6 5214 N/A 3.7

<06 4400, 4500 N/A 342

March 19, 2018 — 14:45 7

mailto:atlas-tdaq-felix-users@cern.ch
https://atlas-project-felix.web.cern.ch/atlas-project-felix
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/dist/
https://its.cern.ch/jira/projects/FLXUSERS

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

206

207

208

209

210

211

212

213

214

215

DRAFT

2 Introduction to FELIX

FELIX is a new detector readout component being developed as part of the ATLAS upgrade effort.
FELIX is designed to act as a data router, receiving packets from detector front-end electronics and
send it to programmable peers on a commodity high bandwidth network. Whereas previous detector
readout implementations relied on diverse custom hardware platforms, the idea behind FELIX is to
unify all readout across one well supported and flexible platform. Rather than the previous hardware
implementations, detector data processing will instead be implemented in software hosted by commodity
server systems subscribed to FELIX data. From a network perspective FELIX is designed to be flexible
enough to support multiple technologies, including Ethernet and Infiniband. Given the general purpose
nature of the FELIX effort, the system has also been adopted by several non-ATLAS projects. This
document is therefore targetted at users both within and outside of the ATLAS upgrade effort.

2.1 FELIX Variants and Functionality

FELIX supports two different link protocols for the transfer of data to and from front-end peers. Each is
supported by the same hardware platform, with separate firmware revisions both based on the same core
modules.

2.1.1 Gigabit Transceiver (GBT) and the Versatile Link

The Gigabit Transceiver (GBT) chipset and associated technologies were developed as part of CERN’s
Radiation Hard Optical Link Project [1]. The goal was to develop a radiation hard bi-directional link for
use in LHC upgrade projects. GBT provides an interface an optical connectivity technology known as the
Versatile link [2], which provides high bandwidth and radiation hard transport of data between GBT end
points.

The GBT transmission protocol is designed to aggregate multiple lower bandwidth links from front-end
electronics components into one radiation hard high bandwidth data link (running at up to 5 Gb/s). The
logical lower bandwidth links which make up a GBT link are known as E-links. The details of how E-links
are supported within the FELIX project are discussed in Section 6.1.5 of this document.

The GBT protocol has been implemented both in dedicated hardware (e.g. the GBTx chip [3]) as well as
directly on FPGA platforms, the latter of which has been built on for use by the FELIX project [4].

2.1.2 FULL Mode

Within the context of the ATLAS upgrade (and subsequently externally) a requirement arose for a higher
bandwidth data link from detector to FELIX than was possible with GBT, which has to support radiation
hardness. These newer clients did not require radiation hardness, and were able to support a protocol
which could be implemented in FPGAs on both sides of the link. The resulting development is known as
’FULL mode’ [5], referring to full bandwidth.

The FULL mode protocol is a implemented as a single wide data stream with no handshaking or logical
substructure (i.e. no E-links). The reduced constraints mean that FULL mode links can operate at a line

March 19, 2018 — 14:45 8

216

217

218

219

220

221

222

223

224

225

DRAFT

transmission rate of 9.6 Gb/s, which accounting for 8b10b encoding means a maximum user payload of
7.68 Gb/s.

Note that FULL mode in FELIX is currently only implemented in the from detector to FELIX direction,
as there are currently no requirements for the to detector direction. FELIX FULL mode variants therefore
implement to detector links with the GBT protocol, as this is sufficient for the required payloads.

2.1.3 Propagation of ATLAS TTC Information

As well as transferring data to and from front-ends, FELIX is also required to interface with the ATLAS
Timing, Trigger and Control (TTC) system. FELIX must provide TTC information both to the front-ends
at full granularity, and to network peers in a reduced form. The propagation of TTC information to the
front-end is performed via dedicated E-links.

March 19, 2018 — 14:45 9

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

DRAFT

3 Hardware Requirements and Setup

3.1 Recommended Hardware Platforms
3.1.1 FPGA 1I/0 Hardware: VC-709

The hardware platform recommended for FELIX operation in detector test stands is based on the Xilinx®
VC-709 Connectivity Kit [6]. This platform provides 4 optical transceivers compatible with both GBT
and *full mode” operation as well as a Xilinx® Virtex®-7 series FPGA and 8-lane PCle Gen 3.0 interface.
The TTC interface for the system is provided by the TTCfx v3 FMC mezzanine card. An image of the
VC-709 board and guide to features is presented in Figure 1.

FMC HPC DDR3 SODIMM
Connector (10x GTH) 2x 64-bit each User LEDs

BPI Parallel
NOR Flash

USB-to-UART
Bridge Connector

Power Switch

® - \—IQVPower
L

User Pushbuttons

USBJTAG
Interface

SFP/SFP+
Cages (4x GTH)

PCle x8 Gen 3
(8x GTH)

SMA GTH
Reference Clock Input

Virtex-7 XG7VX680T- SMA
2FFG1761C FPGA User Clock

Figure 1: The VC-709 development board.

3.1.2 FPGA 1I/0 Hardware: BNL-711

The hardware platform currently under development for the final FELIX implementation in Phase-I is a
custom interface board designed by BNL, known as the BNL-711. The BNL-711 hosts a Xilinx® Kintex®
UltraScale FPGA on a board capable of supporting 48 high speed optical links via MiniPOD transceivers,
with a 16-lane PCle Gen 3.0 interface. On-board clock jitter cleaning and TTC circuitry mean that no
mezzanine attachment is required to connect with ATLAS clock and control systems. An image of the
BNL-711 and its key features are presented in Figure 2. While the board is still under active development,
prototype versions are available to detector test stands for commissioning and integration. Please contact
the FELIX group for more information.

3.1.3 FELIX Host Systems

The current recommended hardware platform for a VC-709 FELIX system is based on the Supermicro®

X10SRA-F motherboard [7]. The system should be populated with at least 32 GB of DDR4 RAM and

March 19, 2018 — 14:45 10

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

DRAFT

SO-DIMM Sockets

JTAG Connector
(Not used for FELIX)

MiniPOD Sockets (x8)

ST Connector 8
(TTC)

(Not fitted in
diagram)

12 V Power
(Not compatible
with Xilinx Power
Connector)

LEMO
Connector

PCle x16 Gen 3 ‘ Kintex UltraScale XCKU115 FPGA
Figure 2: The BNL-711 V1.5 board.

an Intel® Xeon" ES5 family CPU (v3 or v4) with at least six real cores. Please see the motherboard
manufacturer specification for more details.

3.2 Installation of VC-709

For full details regarding the VC-709 please consult the manual provided with your equipment. In terms
of installing the card into a FELIX system please follow the following guidelines. The VC-709 should be
installed into an 8-lane or 16-lane Gen 3 PCle slot on the host motherboard, taking into account the need
for clearance on all sides. The board must be connected to power from the system’s internal ATA power
supply via a custom Molex adapter provided with the board. The power socket on the board is shown on
the upper right hand corner of Figure 1, labelled 12V Power’. Ensure that the power switch, just above
the socket, is switched to the on position.

The FPGA aboard the VC-709 is configured via an on-board JTAG programmer, which can be connected
to a mini-USB cable with the *USB JTAG Interface’ on the top left of Figure 1. A right angled mini-USB
connector is recommended to minimise obstruction of the hosts case lid, although a straight cable is
provided for free with your kit. Note that this has currently only been tested for USB2, which is the
recommended interface. In order to be able to program the card please connect it to a convenient USB
port on your host machine, or to another machine which you wish to use as a programming server. Finally,
ensure that the link transceivers are safely inserted into the on-board cages.

3.3 Installation of BNL-711

The BNL-711 should be installed in a 16-lane Gen 3 PCle slot on the host motherboard. The board
must be connected to power from the system’s internal ATA power supply via an 8-pin Molex adapter (of
the type commonly used for graphics cards). Note that the board does not support use of Xilinx power
connectors.

The BNL-711 provides a JTAG connector to which programmers can be connected for FPGA configuration.
The Digilent®HS2 programmer is recommended for this purpose. Aboard the BNL-711 are a series of
jumpers to permit users to reconfigure various I/O properties of the board. For a full specification of these
please consult Appendix B.

March 19, 2018 — 14:45 11

272

273

274

275

276

277

278

279

280

287

288

289

290

291

292

293

294

295

296

DRAFT

3.4 Connecting to an existing TTC system

This section is only relevant to users who wish to connect their FELIX system to a ATLAS TTC
infrastructure. Other users should skip this section and proceed directly to clock configuration.

3.4.1 VC-709 Only: TTCfx V3 Overview and Installation

For VC-709 systems the TTCfx mezzanine card [8] is designed to connect your FELIX card to the ATLAS
TTC system as used throughout Run 1-3 operations [9]. BNL-711 systems do not require this component
as the same logic is implemented on the BNL-711 itself. The TTCfx is a small FMC mezzanine card,
as shown in Figure 3, which can be attached to the VC-709 via the single FMC slot on-board (top left of
Figure 1).

Figure 3: Image of a TTCfx V3 card.

To complete the installation, you must then connect the P and N SMA GTH Reference Clock inputs on
the VC-709 (middle bottom of Figure 1) to the SMA connectors on the TTCfx V3 (P to P and N to N) via
suitable SMA cables !.

The TTCfx mezzanine card requires no specific firmware programming, and should work out of the box
once connected to a TTC peer and a software configuration script is run. More detail is provided in the
next section.

3.4.2 Connecting TTC and BUSY

This section assumes you are connecting a TTCvx-based system to FELIX. Notes on setting up such a
system are available in Appendix A. Once set up, connect a TTC output from the TTCvx to the TTCfx V3
using a Multi-Mode fibre with ST connectors. The connector on the TTCfx V3 end is visible in Figure 3,
on the upper left hand side. On the BNL-711 the ST and LEMO connectors are located on the upper left
part of the board, as shown in Figure 2.

Finally, use a LEMO connector to connect the TTCfx V3 or BNL-711 to a destination for BUSY signals
(as per your use case). The connector on the TTCfx V3 is visible in Figure 3 on the upper right hand side.
The BUSY signal is the ATLAS standard open-collector BUSY signal, but with a weak 24 Kohm pull-up
to 1.8V to allow viewing on a ’scope.

I An example SMA cable is: http://eu.mouser.com/ProductDetail/Amphenol-RF/135103-01-0600/?gs=
SGAEpiMZZMufBZYvsU/be%2bYZgfjb/mihYZ4wKp9N4jE=. The right angle side goes on the VC-709, to make the cable
bending a bit more gentle. If you have space in your chassis, straight SMAs on both ends will do the job as well.

March 19, 2018 — 14:45 12

http://eu.mouser.com/ProductDetail/Amphenol-RF/135103-01-0600/?qs=sGAEpiMZZMufBZYvsU/be%2bYZgfjb/mihYZ4wKp9N4jE=
http://eu.mouser.com/ProductDetail/Amphenol-RF/135103-01-0600/?qs=sGAEpiMZZMufBZYvsU/be%2bYZgfjb/mihYZ4wKp9N4jE=

297

298

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

DRAFT

3.5 Configuring FELIX Clock

This section assumes you have set up the FELIX software infrastructure as in Section 5. If you have not,
then please do so before proceeding.

3.5.1 Clock Source Selection

FELIX requires a clock source in order to synchronise propagation of signals both within the FPGA
and to external peers. The FELIX firmware supports the use of both a received clock from an external
TTC source as well as an internally generated clock for users who don’t need or have access to a such a
system.

Note: older firmware revisions did not support this feature, so please ensure your version is labelled with
CLKSELECT to ensure compatibility.

To check your current clock selection, run the following command:
$ flx-config get MMCM_MAIN_OSC_SEL

A result of Ox1 indicates a system configured for TTC clock, while 0x0 indicates a local clock is in use.
To change your clock selection run the following:

$ flx-config set MMCM_MAIN_LCLK_FORCE=0xN

For N = 0 or 1 as needed. It is also possible to select your clock source via the elinkconfig graphical
tool. More information on this feature will be provided in Section 6.1.1.3.

Another way to view the overall clock status by running via the FELIX info tool, or f1x-info. This can
be run with no command line parameters to dump summary information for your board as follows:

$ flx-info

Clock settings can then be viewed in the *Clock Resources’ section, as shown in Figure 4.

Clock resources

Local clock in use : YES
Internal PLL Lock : YES

ADN2814 TTC Status: ON

Figure 4: flx-info Clock Resources Output.

March 19, 2018 — 14:45 13

318

319

320

321

322

328

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

DRAFT

3.5.2 TTC Clock Recovery: ADN2814

Should you wish to use a TTC clock source, you must next check that your FELIX board’s ADN2814
clock recovery chip [10] is functioning correctly. Non-TTC users can skip this section.

The overall status of your ADN2814 is reported in the Clock resources report from £f1x-info as show in
Figure 4. For more detail on the chip’s status, run with the following extra parameter:

$ flx-info ADN2814

If your chip is functioning correctly, and you have a TTC system connected, you should see output
matching Figure 5.

TTC Status: ON

Loss of Signal Status: ©
Static Loss of Lock: 0
Loss of Lock Status: 0

Figure 5: flx-info ADN2814 status output.

If the output differs (e.g. if you see a loss of lock reported) please check your connections before resetting
the ADN2814 using the following:

$ flx-reset ADN2814

3.5.3 Clock Jitter Cleaning

Whether you are using an internal or external clock, the signal must be cleaned to minimise jitter and
ensure stable performance. FELIX uses one of two dedicated chips for jitter cleaning depending on your
clock source and hardware.

TTC clocks should be cleaned by the Si5345 chip [11], which is hosted by the TTCfx V3 for VC-709
systems as well as on-board the BNL-711. Non-TTC clocks can also be cleaned by the Si5345, but for
those who don’t have a TTCfx V3 the VC-709 also hosts a different cleaning chip, the Si5324 [12], which
offers sufficient jitter correction for the non-TTC case.

Note: the Si5324 is currently only supported with a dedicated firmware build for those wishing to connect
optical links to FELIX using the FULL mode protocol. Users of GBT must have a Si5345-based system.
Should you wish to use the Si5324 please make sure to check the filename of the firmware tarball provided
on the FELIX firmware distribution site to ensure the name of the cleaner is present.

Whichever your use case, your FELIX card must be configured to the correct jitter cleaner in order to
function correctly. This can be achieved using the £1x-init command line application as follows

$ flx-init -T <N>
For Si5324 use N = 1, for Si5345 use N = 2.

Note: you will have to redo this jitter cleaner initialisation step each time you change FELIX clock source
to maintain normal operation.

To check the status of your jitter cleaner, use the following command:

March 19, 2018 — 14:45 14

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

DRAFT

$ flx-info <cleaner name>

3.6 Connecting and Initialising Optical Links

Assuming you have set up your FELIX clocks specified above for your use case, set up the FELIX software
environment as described in Section 5 and programmed the FPGA aboard your VC-709 or BNL-711 as
described in Section 4 you are now nearly ready to attempt to connect the system to a peer via optical link
using either GBT or FULL mode protocols.

The first step to bringing up your links is to connect your fibres to the transceivers aboard the VC-709 or
BNL-711, ensuring not to place excessive strain on them. Once the connectors are properly seated, you
can check the physical status of your links.

3.6.1 Physical Link Layer Status: VC-709

In order to check the status of your physical connections for a VC-709 (which are SFP based) run the
following:

$ flx-info SFP

Look for the lines marked "Link Status’ in the output as per Figure 6

Link Status | Ok 0Ok Ok 0Ok

Figure 6: flx-info VC-709 SFP physical status output.

3.6.2 Physical Link Layer Status: BNL-711

In order to check the status of your physical connections for a BNL-711 (which are MiniPOD based) run
the following:

$ flx-monitor POD

There will be many lines of output, but you should check the section labelled "MiniPODs’ as shown in
Figure 7.

If your physical link is working correctly you should see loss of latch status *N” for the relevant MiniPOD,
where 814 corresponds to Tx and 824 to Rx PODs respectively. For a physical map of MiniPOD locations
please consult Appendix B.

March 19, 2018 — 14:45 15

DRAFT

MiniPODs

| 1st 814 | 2nd 814 | 3rd 814 | 4th 814 | 1st 824 | 2nd 824 | 3rd 824 | 4th 824 |
[(R — p—— p——— - - | |
Temperature [C]1| 44.9 | 42,6 | 46.2 | 484 | 42.3| 395]| 4
3.3 VCC ivifj 3.28| 3.25| 3.27| 3.26| 3.28| 3.29| 3.
2.5 VCC Vil 2.41| 2.43| 2.42| 2.42| 2.42| 2.44]| 2

LOS latched of channel: |
|===

=
=

2

W

4

wun

]

7

-]

1st 814
2nd 814
3rd 814
4th 814
1st 824
2nd 824
3rd 824
4th 824

< << << <=

P L T

|
|
|
|
[
|
|
|
|
[

< <<= < <<=
< =< <=
P I LY
- <
< << << <<=
<~ <<= << =<=
P T
= === << <=
- € €=

b
< << << <<= H =

Figure 7: flx-monitor BNL-711 MiniPOD physical status output.

3

X

3.6.3 Logical Link Layer Initialisation

a2 Once you have established a successful physical connection, the next step depends on your choice of
s logical protocol. If you are connecting with the FULL mode protocol your logical links should then come
a7+ up immediately. You should therefore be ready to attempt to transfer data to FELIX.

3

Q9

a5 If you are connecting with GBT you will need to train the links to bring them up by running the following:
376 $ flx-init

a77 This should run reporting no errors. You can then print the status of your GBT links with:

378 $ flx-info GBT

a7e The results should match Figure 8.

GBT CHANNEL ALIGNMENT STATUS

Aligned | YES YES YES YES

Figure 8: flx-info GBT status output (VC-709 version, a BNL-711 can have up to 24 channels displayed).
a0 If this looks correct your GBT links should now be fully operational. Before attempting to transfer

a1 GBT data please ensure you have followed the guide in Section 6.1 for details on how to configure your
a2 E-links.

March 19, 2018 — 14:45 16

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

DRAFT

4 Firmware Releases and Programming

4.1 Firmware Distribution Protocol
4.1.1 Release Announcements

FELIX firmware (and software) releases will be announced on the following e-group:
atlas-tdaq-felix-users@cern.ch

Please subscribe to this group to stay up to date with the latest updates. All new releases will include a
detailed change list and reference to the associated version of this user manual.

4.1.2 Firmware Distribution Site

Tarballs of firmware releases (containing both .bit and .mcs files) are made available via a dedicate web
page:

https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/dist/

firmware

Versioning information is available in the on-site ’bitfiles_change_log.md’, please download the latest
version as indicated.

Note: all recent firmware revisions are labelled 'CLKSELECT’ to indicate that they support both dual
TTC and local clock sources. Older revisions were dedicated to one clock or another, but these should
now be considered deprecated. Please upgrade to a newer revision if you have such a version.

4.2 Firmware Programming

The FPGAs aboard both the VC-709 and BNL can be programmed directly via a JTAG interface using the
Vivado™ software suite [13]. For the VC-709 this method also makes possible to program the on-board
FLASH ROM. A configuration programmed into the FPGA directly will be lost if the machine is switched
off, whereas a configuration programmed in the FLASH will persist. This will make it possible to retain
the desired programming state of the card e.g. if transported. This section will describe how to program
the card using all available methods.

4.2.1 JTAG Connectivity

The VC-709 comes with an on-board JTAG programmer, accessible via USB, as described in Section 3.
The BNL-711 does not have an on-board programmer, and as such you will need to acquire a USB-
accessible programmer. The FELIX developers recommend the Digilent®HS?2 for this purpose.

March 19, 2018 — 14:45 17

atlas-tdaq-felix-users@cern.ch
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/dist/firmware
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/dist/firmware
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/dist/firmware

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

DRAFT

4.2.2 Setting up the Vivado™ Suite

Specific installation instructions for the Vivado™ suite are provided with your development kit. Note that
the instructions in this section are compatible with the 2014, 2015 and 2016 releases of the suite. We
recommend you install the software locally on the PC you wish to use as your programming server. This
should be connected to your VC-709 in your FELIX host via USB as described in Section 3.2. When you
first connect your system via USB you will need to run a Xilinx® setup script to configure the bus properly
(path may vary depending on product year):

$ source Xilinx/Vivado/2016.4/data/xicom/cable_drivers/lin64/digilent/install_digilent.sh
The Vivado™ environment can be started with the following commands:

$ source Xilinx/Vivado/2016.4/settings64.sh
$ vivado &

You will then be presented with the Vivado™ splash screen, where you should select *Open Hardware
Manager’ as shown in the red box in Figure 9.

¢ Vivado 20154@pc-tbed-felix-03.cern.ch - O X
Hle Fow Todis Mindow Helo

VIVADO™ a0 e XILINX

ALL PROGRAMMABLE.

Quick Start
= [=
Create Mew Project Open Project Open Example Project

Tasks

Manage IP Open Hardware Manager HKilinx Tcl Stare

Information Center

9 b

Documentation and Tutorials Quick Take Yideos Release Motes Guide

& Tl Console

Figure 9: Vivado™ Splash Screen.
From the hardware manager select ’Open Target’ on the top left as shown in Figure 10 and choose *Open
New Target’.

From this point, select ’Next’ on the following screen and Connect to Local Server’ after that, once again
press "Next’. This should bring you to the hardware list. On this screen select the FPGA on your VC-709
or BNL-711 from the uppermost list (if you have only one board there should be only one entry, if not,

March 19, 2018 — 14:45 18

429

430

431

432

433

434

436

437

DRAFT

File Edit Flow Tools Window Layout Wiew Help

Pl X | % | (5} |PS Default Layout MILE BN

Hardware Manager - unconne

@ No hardware target is open.] Open target
Hardware — O X | DebugProbes _ O * X
40 LACEY | QT e(E

Name |

Figure 10: Vivado™ Hardware Manager.

find yours in the list by name). The screen you will see is shown in Figure 11. Once you have found your
FPGA and selected it press "Next’ on the bottom right and *Finish’ on the following screen.

¢ Open New Hardware Target@pc-tbed-felix-03.cern.ch d

Select Hardware Target

Select a harchware target from the list of awailable targets, then set the appropriate |[TAGS clock {TCE) frequency. If you do not
see the expected devices, decrease the frequency or select a different target.

Harciware Targets
Tupe | Mame | ITAGC Clock Frecuency |

H xilinx_tcf Digilent;2 10203 A037A5 A 15000000 -
H xilinx_tcf Xiling/00001637878101 6000000 = @

Hardware Devices (for unknown devices, specify the Instruction Register (IR} length)

Marne | IDCode | IRLength |
@ wr7wE901_0 33691093 6

Harthware server: localhost:2121

‘ < Back ” Mext >]l Einish || Cancel |

Figure 11: Vivado™ Target Selector with VC-709’s Virtex7 FPGA selected, as indicated by red arrow (FPGA ID
will vary from model to model). The BNL-711’s Kintex Ultrascale FPGA will appear as xkcu115¢

From here, you will be taken to the main programming interface, as shown in Figure 12. You are now
ready to program your FPGA or FLASH.

4.2.3 Programming the FPGA Directly

To program an FPGA directly, select it from the device list on the main programming window (as shown
in Figure 13, right click and select *Program Device’.

You will now be asked to select a .bit file as shown in Figure 14. This is available in the firmware release
tarball as specified at the start of this chapter. You do not need to select a debug probes file. Once a file

March 19, 2018 — 14:45 19

DRAFT

¢ Vivado 20154@pc-tbed-felix-03.cern.ch -] X
File Edit Flow Tools Window Layout Yiew Help
] o B X [%|G [Eosmninon | & % | 0ssnocara - [&
Hardware Manager - localhost /xilinx_tcf/Xilink/0000163 787801 x|
@ There are no debug cores. Program device Refresh device
| Hardware — O x|

LAl |
| __MName i Sta
& B localhost (2) Cannec
o xilinx_tcffDigilent/2 10203 A037A5 A (0) Clused;
@ xilinxk_hXilinkg /0000163787801 (1) Open
G HCTVHEODO (1) Prograr

L& xADC (systern Monitor)

AT

o m I
 Properties w8 (B

Raked L

Select an object 1o see properties

| Tcl Console G

x - INFO: [Labtoolstc] 44-466] Opening hw_target localhost:3121/011nx_Tof011nx/00001637878T01 -1
AT current_hw_dewice [lindex [get_hw_dewices] O]

efresh_hw_dewice -update_hw_probes false [1index [get_tm_devices] 0]

PINFO: [Labtools 27-1434] Dewice xc7vxB90t (ITAG dewice index = 0) is programmed with a design that has no supported debug coreds) in it
WARNING: [Labtools 27-3123] The debug hub core was not detected at User Scan Chain 1 or 3.

esolution:

. Make sure the clock connected to the debug hub (dbg_hub) core is 3 free running clock and is active OR 3
m i12. Manually launch hw_serwer with -e "set xsdb-user-bscan <C_USER_SCAN_CHAIN scan_chain_number>" to detect the debug hub at User Scan lE

=1
R e
Type & Tcl command here
& Td Console O Messages % Serial 1) Links | [& Serial 1f0 Scans
Open |
Figure 12: Vivado™ Programming Interface.
¢ Vivado 2015.4@pc-tbed-felix-03.cern.ch - O X
Eile Edit Flow Tools Wincow Layowr Yiew Help
“E' Defaul(Layou(& Dashboard « ‘ @
[H_amware Manager - localhost jxilink_tof/Xiling /0000 163 787801 |
‘@ There are no debug cores. Program dewice Refresh dewice

e

LA |
[_ MName | sa
@ B localhost (2] Connec
Bo wiliny_teffDigilent/2 L0203 A03TASA (0) C\nsed;
@ xilinx_tcfXilinx /0000 163787801 (1) Open
B A0t 0 (1) -
L5 xADC (Systerm Manitar)

|3 Harclware Device Froperties... Ctr+E
& Program Device
@ Refresh Device

|EX} L & Add Configuration Memory Device
| Harchware Device Properties Boot from Configuration Memary Device
== Program BBR Key...

Clear BER. Key...

B NCTE301_0

Prograrm eFLUSE Reqisters

Name: HETVHESOL D Export to Spreadshest

Part: KETWHEIOT -

ID code 33691093 |

IR, length: 5

[«] JUILL | D[]

General Properties
| Tel Console — o x|
@ INFO: [Labtoolstcl 44-466] Opening hw_target localhost:3121/x111nx_tofxi11nx Q0001637878101 =]
#o urrent_hw_dewice [lindex [get_hw_devices] O]

L) refresh_hw_dewice -update_tw_probes false [lindex [get_hw_dewices] O]

11’} INFO: [Labtools 27-1434] Dewice xc7wxB90T (JTAG device index = 0) is programmed with a design that has no supported debug core{s) in it
= WARMING: [Labtools 27-3123] The debug hub core was not detected at User Scan Chain 1 or 3.

esolution:

. Make sure the clock connected to the debug hub (dbo_hub) core iz a free running clock and iz active OR

m 12, Manually launch hw_server with -e "set xsdb-user-bscan <C_USER_SCAM_CHAIMN scan_chain_number=" to detect the debug hub at User Scan l?

J [+]
Type a Tcl comwand here
Td Console © Messages % Serial /O Links Serial IO Scans

Program hardware device with specified bitstream ‘

Figure 13: Selecting Device to Program.

March 19, 2018 — 14:45

20

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

DRAFT

has been chosen, select "Program’ on the bottom right to write the file to the FPGA. Once complete your
FPGA should now be fully reprogrammed.

e
| Select a hitstream programming file and download it to your hardware device. You can optionally select a debug
probes file that corresponds to the debug cores contained in the bitstrearm programming file ﬂ
]_ Bitstream file: |,fafs,fcern.ch,fuser,fj,fjpanduro,fFL)(?OQ_RM0302_4CH_ALITOCLK_SVN4001_161026_14_39 ||:|
| Debug probes file: | ||:J
[Enable end of startup check
|

| Program | | Cancel

Figure 14: Selecting Bit file to Program.

4.2.4 Programming the FLASH ROM (VC-709)

To program the FLASH ROM start once again from the main programming window. Find and right click
on your FPGA and select ’Add Configuration Memory Device’ in the list, as shown in Figure 15

From here you will be taken to the a dialog requesting that you select the memory device you wish to
program. On the VC-709 this will typically be a Micron memory device with given parameters. To find it
quickly enter the criteria demonstrated in Figure 16 and select the device as shown. Look for the device
with alias *28f00ag18f’.

Once selected, press Ok’ on the bottom right and Ok’ again on the following window asking Do you
want to program the configuration memory device now?’. On the subsequent dialog, choose the .mcs
file you wish to program (provided with your firmware release) as shown in Figure 17. Select 'Ok’ at
the bottom to program the FLASH. Once complete your card should be programmed with a non-volatile
firmware installation that will survive loss of power to the host.

4.2.5 Programming the FLASH ROM (BNL-711)

FLASH programming for the BNL-711 is done via means of the ££1ash application, which is provided as
part of the FELIX software suite. Please consult the instructions provided in Section 6.5.7. Note that the
BNL-711 has 4 different FLASH sectors which can be programmed. The board will by default come up
from powercycle loaded from the sector specified by the jumper configuration described in Appendix B.
Please ensure you program the correct sector in order to see the expected image loaded.

March 19, 2018 — 14:45 21

DRAFT

¢ Vivado 20154@pc-tbed-felix-03.cern.ch

- m} X
File Edit Flow Tools Window Layout Yiew Help

E““l‘ﬂ“ .X‘K‘@%Defaulua\wul & 5%

(5 Dashboard ~ ‘ ®

{ Hardware Man_auer ~ localhost fxilink _tcf fXilinx fO000 163 78780 1 X”

‘@ There are no debug cores. Program dewice

Eefresh d

iHardwarE A B

B prpE
[Mame J
& B localhost (2] Connec
B o xilink_tcf/Digilent/2 10203A037454 (0) Closed
B xiline 1o fXiling /0000163787801 (1) Open
O kcAnBa0t 0 (1) i

L& xaDC ysterm Manit

551 pay
ey Bl

[Harcware Device Properties Ctri+E

@ Program Device
@ Refresh Device

Uil & add Configuration Memory Device...
Device Froperties Boot from Configuration Memory Device
Program BBR Kesy.
& %CTHES0L0 Clear BBR Key...

Program eFUSE Registers

Name ACTVHES01_0 Export to Spreadsheet...
Part: KCPWHBI0T -
1D code; 33641093

IR length &
‘ JUl D [E]

General Properties

| Tcl Console —aE x|
@ & INFD: [Labtoolstcl 44-466] Opening hw_target localhost:3121/x1 1inx_tcTaXilinxA0001637878 01 [~]-
. current_hw_dewice [lindex [get_hw_devices] 0]
= | refresh_hw_dewice -update_tw_probes Talse [lindex [get_hw_dewices] 0]
11’} P INFO: [Labtools 27-1434] Dewice xc7wwGB0T (ITAC device index = 0) is programmed with 2 design that has no supported debug coreds) in it
= WARMING: [Labtools 27-2123] The debug hub core was not detected at User Scan Chain 1 or 3.
@ ; Resolution:
% 1. Make sure the clock connected to the debug hub (dbg_hub) core is a free running clock and is active OR
E 2. Manually launch hw_server with -g "set xsdb-user-bscan <C_USER_SCAM_CHAIMN scan_chain_number=" to detect the debuy hub at User Scan l%
[
1 []
e a Tcl command here
d Console © Messages % Serial IfO Links [& Serial /0 Scans
Add a Configuration Memary Device ‘ D
. . . ™ . .
Figure 15: Select Vivado™ Flash Programming Dialog.
¢ Add Configuration Memory Device@pc-tbed-felix-03.cern.ch x

@ Choose a configuration memory part. This can be changed later,

Device: @ xcPvxE901_0

Filter
Manufacturer |M\crnn T, ‘ Type |bp\ v|
Density (Mb) [1024] wictth (%16 -]
Eeset All Filters
Select Configuration Memory Part
gearch: (O |
| Name J Part 7]Manuf’atlurerJ Alias] Famit | Twpe JDenswt (Mh)] Width J
& 28f00am2 Sew-bpi-x16 28f00am2 Sew Micron mZ9ew bpi 1024 x16
% 28f00ap30b-bpi-x16 28f00ap3ioh Micron p30 bpi 1024 x16
& 28f00ap30e-bpi-x 16 28f00ap30e Micron p30 bpi 1024 x16
& 28f00ap30t-hpi-x16 28f00ap30t Micron p30 bpi 1024 x16
& mi2Bew0lga-bpi-x16 mi2Bewdlga Micron mi28ew bpi 1024 x16
& mi28gu0lgaanle-bpi-x16 mi2Bgudlgaaxle Micron 28f00aglBf glB& bpi 1024 x16

Figure 16: Memory Device Selection Interface.

March 19, 2018 — 14:45

22

DRAFT

¢ Program Configuration Memory Device@pc-tbed-felix-03.cern.ch

Select a configuration file and set programming options.

Memary Device: [mi28quolgaaxle-bpi-x16

Configuration file:

[=

['user/ifjpandura/FLX709_RM0302_4CH_AUTOCLK SwN4001_ 161026 14 35.mcs || -

PRM file: | |[-]
State of non-config mem /O pins:

Program Operations

Address Range: |Configurati0n File Only T
RS Pins: MNOME

[Erase

[Blank Chack

[Program

[Werify

[erify Checksum
SvE Options

[Create 5¥F Only (ho program operations)
SF Flle: [

l Ok,]| Cancel H Apply

Figure 17: Selecting .mcs file to program.

March 19, 2018 — 14:45

23

458

459

461

462

464

465

466

467

468

469

470

471

472

473

474

DRAFT

4.2.6 Enabling new FPGA Configuration

If you have programmed our FPGA directly, please soft reboot your machine to pick up the new config-
uration. For changes to the FLASH ROM a full powercycle may be needed to pick new firmware, unless
you have manually programmed the FPGA from FLASH as described in 6.5.7. In the latter case a soft
reboot will be sufficient.

4.2.6.1 PCle hotplug procedure

Should you wish to avoid rebooting your machine (assuming a powercycle isn’t required) it is possible to
rescan the PCle bus re-synchronise with the new firmware image. Note that this procedure hasn’t been
fully validated, and may produce inconsistent results. It should only be attempted if a reboot is prohibited.
First, remove the device from the bus list as follows (root privileges needed):

$ echo 1 > /sys/bus/pci/devices/0000:<bus ID>/remove

(where you get the bus ID of the device from Ispci)

Then, rescan the bus to bring the device back with:
$ echo 1 > /sys/bus/pci/rescan
It is also recommended that you restart the FELIX driver at this point to pick up the new image:

$./etc/init.d/drivers_flx restart

March 19, 2018 — 14:45 24

475

476

477

478

479

480

481

482

483

484

485

487

488

489

490

491

492

493

494

495

496

DRAFT

5 Software Distribution and Installation

5.1 Software Distribution Protocol
5.1.1 Pre-requisites
FELIX software is currently only formally supported for systems using the SLC6 operating system. Stable

functionality under CentOS7 is not guaranteed, but the intention is to move to more formal support in the
near future.

5.1.2 Release Announcements

FELIX software (and firmware) releases will be announced on the following e-group:
atlas-tdaq-felix-users@cern.ch

Please subscribe to this group to stay up to date with the latest updates. All new releases will include a
detailed change list and reference to the associated version of this user manual.

5.1.3 Release Distribution Site

The main distribution mechanism for new software releases is via a dedicated web page:

https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/dist/
software

Here users will be able to find the latest firmware and software. The newest recommended version is
marked in all cases. Installation instructions for the software suite and driver can be found below.

5.1.3.1 FELIX Driver

The latest version of the FELIX driver is available on the distribution site within ’software/drivers’.

5.1.3.2 FELIX Software Suite

The latest version of the FELIX software suite is available on the distribution site in within ’soft-
ware/apps’.

March 19, 2018 — 14:45 25

atlas-tdaq-felix-users@cern.ch
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/dist/software
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/dist/software
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/dist/software

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

DRAFT

5.2 Software Installation Instructions
5.2.1 Driver RPM Installation Instructions
5.2.1.1 DKMS

The FELIX driver makes use of ’Dynamic Kernel Module Support’ (DKMS) to automatically track kernel
changes once installed. Users should therefore only need to change their installation if a new version of
the driver itself is released.

5.2.1.2 Removal of Existing Driver Installations

In order to update the FELIX driver it will first be necessary to remove any existing driver installations
from your system. To do this please follow the procedure outlined below. You will require superuser
privileges in order to perform the driver de-installation itself and subsequent cleanup.

To check if a driver is already installed issue the following command:
$ rpm -qa | grep tdaq

If a driver rpm is installed you’ll see a response along the lines of:
$ tdag_sw_for_Flx-1.0.6-2dkms.noarch

To remove the driver do the following (substituting ’filename’ for the results of the search in the previous
step):

$ rpm -e filename

Once this operation is complete you will be in a position to install the latest FELIX driver.

5.2.1.3 Installation of New Driver

To install the FELIX driver RPM, run the following command (superuser privileges required):
$ yum install tdaq_sw_for_Flx-1.0.6-2dkms.noarch.rpm

(this should take 1-2 minutes to complete, due to the need to compile the driver for your kernel as per the
DKMS framework)

Once the driver is installed you should start it as follows (as superuser):
$./etc/init.d/drivers_flx start

Once started you can check the status of the card using:
$ cat /proc/flx

You should see output along the lines of Figure 18 (will vary depending on your firmware version).

March 19, 2018 — 14:45 26

DRAFT

Debug
Number of cards detected

Card 0:
Reg Map Version
Build revision (SVN version)

Number of
Interrupt
Interrupt
Interrupt
MSIX PBA

descriptors
count |
flag |

mask |

ooooo000

o o R O

0

=1

3
5
8

2

7
1

0
1
0

4

r
, Nu
|
|
|

Date: 2-7-2017,
mber of interrupts
798595 | 0|
o | 1|
o | o |

FLX driver for release tdag710 for felix 1.0.6 and distributed with driver RPM 1.0.6

time

(=R S =)

The command 'echo <action> > /proc/flx', executed as root,
allows you to interact with the driver. Possible actions are:
debug -> Enable debugging

nodebug -> Disable debugging

elog -> Log errors to /var/log/message

noelog -> Do not log errors to /var/log/message

Figure 18: Example output from /proc/flx

525

526

527

528

529

530

531

532

533

534

535

536

5.2.2 Installation of FELIX Software Suite

The FELIX software release is available pre-compiled as a tarball which can be installed anywhere and
then set up for use by running a command line script. Each user can download their own version, or the

release can be installed centrally and the location of the script shared with users.

To unpack the tarball, run the following command:

$ tar -xvzf <filename>

Once unpacked, a setup script must be run to enable access to all libraries and binary files. The script can
be run as follows from the release base directory:

$ source felix-03-04-02/x86_64-slc6-gcc62-opt/setup.sh

This script will need to be run with every new session, or added to the environment setup procedure. Once
complete you should have access to all FELIX software. In the next section we will describe how to test
your installation to verify full functionality.

March 19, 2018 — 14:45

27

5.

@©

7

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

DRAFT

6 Basic Tools

The FELIX software suite comprises both high and low level tools. At the highest level, the FelixCore
application is responsible for communication and bulk dataflow in a full slice system. At a lower level,
the suite provides a number of tools, both command line and GUI based, to facilitate system configuration
and testing. This chapter will describe these low level tools such that users will be able to effectively
communicate with, configure and test their system. If you are looking to set up a full system slice with
data output to a network please consult Section 7, which describes the FelixCore Application and NetlO
library. This section assumes that you have set up your FELIX software environment as described in
Section 5. None of the tools in this section should require superuser privileges to run. All tools presented
below work in both GBT and FULL mode, and for VC-709 and BNL-711, unless otherwise stated. Where
special parameters are needed to distinguish modes this will be indicated. A quick reference for all tools
to be covered in this section is presented in Table 2.

Note: the FELIX software suite contains a number of tools which are considered for developer use only.
All tools which are rated for use by front-end users are listed in this document. Use of any other software
is not recommended unless asked to do so by a FELIX developer.

6.1 E-link Configuration with elinkconfig

Before FELIX can be used to transfer data its input and output links must be configured. The link
configuration for a given FELIX card can be accessed and modified using the ’E-link configurator’
application, or elinkconfig’. This is a GUI based tool which displays the current configuration state
for all links associated with a given card. The tool supports both GBT and FULL mode.

Note: the link configuration must be manually refreshed every time a FELIX FPGA is reprogrammed,
including power-cycling of a host!.

To run elinkconfig application issue the following command:
$ elinkconfig

From here you will reach the main configuration panel as shown in Figure 19

The elinkconfig interface is split into three main areas. At the top there are two control bars to set FELIX
card parameters, open/save configuration files as well as link selectors. The left main panel displays the
from front-end to FELIX/host configuration for the selected link.

6.1.1 Global Panel

The elinkconfig global panel, shown in more detail in Figure 21 provides the top level interface for the
tool. From there it is possible to select which FELIX card within your system you wish to configure,
which link within that card, which link mode, as well as a number of other configuration properties. It is
also possible to open previous configuration files, save new ones, and read the current configuration from
the selected FELIX card.

March 19, 2018 — 14:45 28

DRAFT

Table 2: List of all recommended user tools. For more information on each please click the tool name to visit the
dedicated section of this document.

Low Level Tools

fix-info
fix-config
flx-init
fix-reset

flx-monitor

View FELIX hardware and firmware status information

View and modify low-level firmware parameters

Initialise FELIX, as well set as low level GBT and clock/jitter cleaning parameters
Reset FELIX or specific component

Status information for LTC2991 [14] devices about a BNL-711

Dataflow Tools

fdaq Receive data from FELIX and save to files or perform sanity checks

fupload Upload data through FELIX to a front-end E-link

FELIX Configuration Tools

elinkconfig | GUI for link and data generator configuration.

felink Calculate link IDs given inputs with differing formats.

fereverse Reverse the endianness of data passing through an E-link.

fgpolar Switch 0/1 polarity of all data coming or going through a specific GBT link.
feconf Upload link and/or data generator configuration to FELIX from the command line.
femu Control FELIX data generators.

feto Control FELIX timeouts (global, TTC and link data, a.k.a ’instant timeout’).
ffash Command line programming tool for FLASH ROM modules in BNL-711 card.

General Debugging Tools

fcheck

fedump
fec
fuptest

fplayback

Perform configurable sanity checks on data from a file or dump selected data blocks
to screen.

Receive data from FELIX and dump it to the screen.
Debug control and communication with GBT-SCA chip
Upload data through FELIX to multiple front-end E-links.

Load data through FELIX to a front-end E-link (or links) and expect data to return
via loopback. Verify returned data.

Remote Communication and Configuration Tools

fic

fgconf

Read or write GBTx chip registers via the GBT-link IC-channel
Read/Write GBTx registers via GBT-SCA i2c channel.

March 19, 2018 — 14:45

29

571

572

573

574

575

576

577

578

579

580

581

DRAFT

K% FELIX E-link Configurator @ medway.pp.rhul.acuk - O X
FLX-card: 0(709) - |Read Cfg| TH_FO... || FH_FO... | |Timeout... | Clock... Advanced
File: Open... Save...
Link O |2 @ GBT GBT-Wide FULLmode |Replicate.. |Repl 2 All Generate/Upload...
Enable: ox07f80 Mode: 0x11111111 #Bits: 2+2+2+2+2+2+2+2 Enable: exe006 Mode: 0x11111111 #Bits: 0+8+0+0+0+8+0+0
v 2(07) Egroup 0 Egroup 0
4 (06) Shi0bl Egroup 1 Egroup 1
EPATH: 7 EPATH. 7
v 2 (06) Egroup 2 Egroup 2
EPATH: 6 e o EPATH: 6 o
9193} EPATH: 6 V|8 (05}
z Egroup 4 T HAINS Egroup 4
EPATH: 5 vl 2 (05) EPATH: 5
— 8b10b - v EC (3f)
EPATH: 5 EPATH: 5 HOLC ~
EPATH: 4 ‘;:1::)4) v EC(3f) EPATH: 4
16 (03) * |[HDLC ~ 16 (03)
EPATH: 4 EPATH: 4
EPATH: 3 =y EPATH: 3
4 (02)
EPATH: 3 EPATH: 3
v 2(02)
EPATH: 2 et EPATH: 2
8 (01) v 8(01)
EPATH: 2 EPATH: 2
8bl0b ~
v 2(01)
EPATH: 1 TR EPATH: 1
a0 EPATH: 1
Replicate.. HAIE Replicate..
v 2(00)
EPATH: 0 Repl 2 All EPATH: 0 Repl 2 All
8bl0b ~
EPATH: O Disable EPATH: 0 Disable
To-Host/From-GBT From-Host/To-GBT
FELI X v2.7.0 22-NOV-2017 (tag: felix-03-09-00) Quit

Figure 19: Main panel - elinkconfig

This panel also contains an advanced developer feature allowing you to select the maximum chunk size
for a given E-link width - users are recommended to avoid changing these settings as they may cause
unexpected behaviour.

From the global panel it is possible to access a number of sub-panels, as indicated in Figure 21. These
give access to more advanced configuration options, details of which are presented below.

6.1.1.1 Data Path Fan Out Selectors: TH_FO and FH_FO

FELIX operates two separate data generators within its firmware, one attached directly to the data path
going to the host, and one attached to the path going towards the front-end. While the generators are
attached, they have mutually exclusive access to the data path with regular non-emulated data in both
directions. To avoid the two data types colliding only one type may access the path at a time. The
fan out selectors control this access by ensuring that only internally emulated data or external data can

March 19, 2018 — 14:45 30

582

583

584

585

586

587

588

589

590

591

592

DRAFT

L% FELIX E-link Configurator @ medway.pp.rhul.ac.uk - a =
FLX-card: 0(709) ~ | |ReadCfg| TH_FO... FH_FO.. Timeout... Clock... Advanced
File: | Open... Save...
Link |0 - & GET GBT-Wide FULLmode Replicate.. Repl 2 All Generate/Upload...
Enable: 8exe7f8e Mode: x11111111 #Bits: 2+2+242+242+2+2 Enable: 8x0006 Mode: 8x11111111 #Bits: 0+8+0+0+0+8+0+0
v 2(07) Egroup0 | Egroup 0
4 (06) 8blob - Egroup 1 Egroup 1
EPATH: 7 EPATH: 7
7 2 (06) Egroup 2 Egroup 2
EPATH: 6 2b10b Egroup 3 EPATH: & Egroup 3
8 (05) v 8(05)
EPATH: & E 4 EPATH: 6 E 4
group AR group
EPATH: 5 v 2105] EPATH: 5
a(04) 8bl0b ~ v EC (3f)
EPATH: 5 EPATH: 5§ HDLC -

v 21(04) v EC (3f)
8bl0b - HDLC £ 16 (03)
EPATH: 4 EPATH

viz(o3) |RCESEREEN

EPATH: 3 8b10b EPATH: 3
4 (02) -

EPATH: 3 EPATH: 3

EPATH: 4 EPATH: 4

16 (03)

B

v 2(02)
EPATH: 2 T EPATH: 2
8 (0l1) v 8(01)

EPATH: 2 EPATH: 2

8bl0b -
v 2(01)

EPATH: 1 EPATH: 1
ainey | (8hick -

EPATH: 1

v 2(00
EPATH: 0 Ll Repl 2 All EPATH: 0 Repl 2 All
8bl0b -

EPATH: 0 Disable EPATH: 0 Disable

To-Host/From-GBT rom-Host/To-GBT

FELIX v2.7.0 22-NOV-2017 (tag: felix-03-0-00) Quit

EPATH

Replicate.. Replicate..

Figure 20: elinkconfig panel split. The uppermost panel (purple box) controls global settings and GBT selection.
The left main panel contains the E-link configuration for the from front-end to host direction, the left main panel
the from host to front-end direction

be configured to pass at any one time. Most FELIX applications are able to configure these selectors
automatically, but for the purposes of user testing it may be necessary to set these values manually. The
selectors are accessed via the TH_FO (to host) and FH_FO (from host) buttons in the global panel. The
resulting dialogs are presented in Figure 22.

In order to switch the selector value simply open the required dialog and click on the link number you
wish to toggle. A link displayed with its number alone is set to external data, if a link is displayed with
its number plus "E’ it is in emulation mode. It is also possible to set/unset all values using the All’ and
’None’ buttons provided. Note that changes made in this dialog are immediately propagated to the FELIX
card in question once you select OK’..

In some cases a user may wish to prevent other applications from automatically changing these settings.
For example, if a specific link is nominated for TTC information transfer it may be convenient to fix this

March 19, 2018 — 14:45 31

593

594

595

596

597

598

599

600

601

602

603

604

605

606

DRAFT

Access FELIX
data timeout

control dialog Access FELIX

configure fromcard control dialogs
clock source
\ l / selector dialog

FLX-card: 0(709) - | |Read Cig |TH_FD,.. FH_FO... |Timeﬂut,,‘ Clock.. Advanced

Savelfope? link _..l File: | Open... || Save.. |
configuration

Select FELIX Read link Access data
card to configuration path fan out

to/from file Link [0 z|[¢ GBT) GBT-Wide FULLmode | Replicate.. | Repl 2 All Eansoisilalond s
Select input Select link Rep\!cate \.mk i
ecini A configuration Access configuration
configure . . across all other upload/data generator
Replicate link links setup dialog

configuration
across selected
other links

Figure 21: elinkconfig global panel.

K% GBT To-Host FanOut Select: E=emulator X K% GBT From-Host FanQut Select: E=emulator x
GBT: 0E || 1E || 2E || 3E Locked GBT: 0 1 2 3 Locked
All None | Cancel | OK All None Cancel oK

Figure 22: Fan out control for to-host (left) and from-host (right) directions. The setting for each link is displayed
separately (in this case for a 4-link VC-709 system). It is also possible to lock the settings using the dedicated check
box.

to external data for the duration of a test. In this case it is possible to lock the values by selecting the
"locked’ check box. Applications will then be unable to change these settings until the card is reconfigured
from this interface or the FPGA is reprogrammed. More information on configuring TTC transfer to the
front-end are available in Section 6.1.3 below.

6.1.1.2 Data Timeout Control Dialog

FELIX offers the facility to time out pending incoming data after a configurable window from receipt of
the first related packets. This is applicable for both regular and TTC data (in the to-host direction). Should
data time out then all available blocks are transferred to the host with a dedicated trailer indicating that
a timeout has occurred. The timeout feature is enabled by default, but can me modified or disabled/re-
enabled via the control dialog accessible by selecting the Timeout’ button in the global panel. This will
open the dialog shown in Figure 23. From here it is possible to disable/enable both regular data and TTC
timeouts using the check boxes, as well as modify the timeout window sizes. This should typically only
be done under the guidance of a FELIX developer for debugging purposes. Note that changes made in
this dialog are immediately propagated to the FELIX card in question once you select "OK’.

March 19, 2018 — 14:45 32

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

DRAFT

K% Datablocks Time-out Configuration *

v Time-out enah| 65535 . x 25ns
v TTC time-out enab| 4095 _|x 25ns
Cancel 0K

Figure 23: elinkconfig data timeout control dialog.

6.1.1.3 Clock Source Selector Dialog

As mentioned in Section 3.5.1, FELIX supports two different firmware clock sources. It is possible
to switch between these sources from elinkconfig from the clock source selector dialog, accessible
by clicking the ’clock’ button in the global panel. The selector dialog is shown in Figure 24, and is a
simple two button toggle between TTC and local clock. Note that changes made here will be immediately
propagated to the FELIX card in question once you select ’OK’. Please also consult Section 3.5.3 before
making any clock changes, to ensure you correctly configure your FELIX card’s jitter cleaner post-clock
change to ensure continued stable operation.

K% Clock Configuration X

TTC (e Local
Cancel oK

Figure 24: elinkconfig clock source selector dialog.

6.1.2 To-Host Panel

The to-host panel provides access to the configuration of the currently selected link (GBT or FULL mode)
in the to-host direction. The type of panel to show can be selected in the global panel as described in
Figure 21. In the GBT case it is possible to configure the complete set of E-links associated with this link,
split up by E-group. It is also possible to configure the SCA and TTC links (see Section 6.1.6.4 for more
info), the latter of which provides L1 accept information to the host. For each link it is also possible to
select the type of encoding to be used, although 8b10b is recommended for all regular data links. A more
detailed look at this panel is presented in Figure 25.

Note: In GBT mode it is possible to run in either ’"Normal’ or 'Wide’ mode. Wide mode increases the
width of the GBT link to accommodate two extra E-groups. This feature is currently not yet rigorously
tested. If wide mode is selected the two greyed out E-groups in the to-host panel will become accessible.

In FULL mode this panel provides fewer options, as such this link mode does not contain logical E-link
subdivisions. This version of the panel is presented in Figure 26.

March 19, 2018 — 14:45 33

628

629

630

631

632

633

634

635

636

DRAFT

8 bit E-links 2 bit E-links

TR

Enable: 8x0194 Mode: 0x11111111 #Bits: 2+2+4+0+0+8+0+0

Egroup 0
Egroup 1
EPATH, 7
Egroup 2 Select E-group
) [—)
At Egroup 3 to configure
Link encodi So) pan 6
ink encoding — | o=
dropdown T
1 EPATH: 5
direct e v EC(3f) Select to activate
 sb10p | .
HDLC 16 (03) | HOLE___~ and configure EC
' ' ' V| T2H (63b) & TTC-to-host
itk (T2H) E-links
v 4(02)
EPATH: 3
8b10b - | |
. EPATH: 2 H _h
Toggle E-link - Rejphcat.e E-link
OH/OH EPATH: 2 conflguratlon dCross

[vz all E-groups
EPATH: 1 8b10b -
4 (00)
EPATH: L

e Replicata. Replicate E-link
Repl 2 All —— i 1
EPATH O | o ob « ep configuration across
EPATH: 0 Disable selected E-groups

To-Host/From-GBT

\ Disable all E-links
| | in this E-group
16 bit E-links 4 bit E-links

(not currently
supported)

Figure 25: elinkconfig to-host panel (GBT mode). Various configuration options and tools are indicated as they
appear in the panel.

6.1.3 From-Host Panel

The from-host panel makes it possible to configure the GBT links transporting data from FELIX towards
connected front-end electronics. This panel only exists in GBT mode form as FULL mode is only a to-host
protocol, and any FULL mode firmware will implement from-host links as GBT. A more detailed look
at this panel is presented in Figure 27. A key difference between this panel and the to-host panel is that
the link encoding available also includes several different TTC paths (in this case TTC-1 and TTC-2 are
shown) which are for the propagation of TTC information from FELIX to the front-end. Depending on
the E-link width used TTC paths from O to 4 are can be made available. Using this encoding selector it is
therefore possible to nominate specific E-links to carry TTC data as needed.

March 19, 2018 — 14:45 34

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

DRAFT

Enable: 0x00000 Mode: 6x11111111 #Bits: 0+0+0+0+0+0+0+0

EPATH: 7

EPATH: 6

EPATH: 6

EPATH: 5
Sl Activate TTC-
T2H (63b) <« to-host (T2H)
Single wide FULL EPATH: 4 Elink
mode link |v| Enable

—— |sb1ob ."

EPATH: 4

FULLMODE

EPATH: 3

EPATH: 2

EPATH: 2

EPATH: 1

EPATH: 1 3
Replicate..

EPATH: 0 Repl 2 All

EPATH: 0 Disable

To-Host/From-GBT *Full Mode*

Figure 26: elinkconfig to-host panel (FULL mode).

6.1.4 Link and Data Generator Configuration Upload Dialog

The to-and-from host panels allow you to put together a complete configuration set for all links handled
by a given FELIX card. Once you have prepared your desired configuration, you can upload it to the
FELIX in question by selecting the ’Generate/Upload’ button in the upper panel on the right. This will
open the upload dialog, as shown in Figure 28. The GBT version is shown, but the FULL mode variant is
essentially identical, beyond some disabled developer features.

Once the panel is prepared, select *Upload’ from the middle box labeled "E-link Configuration’ to write
your configuration to the card. If you also wish to configure the FELIX on-board data generators for tests in
emulation mode select the *Upload’ button in the lower ’Emulator Data’ box. Note that if you are running
in emulation mode and wish to change your E-link configuration you must remember to upload to the
emulator every time you upload a change. Note that in FULL mode the data generators will only produce
FULL mode data in the to-host direction. In the to-front-end direction GBT data will be produced. In
GBT mode GBT data will be produced in both directions.

Once your configuration is uploaded you can then proceed to use the FELIX system as normal, the new
settings will take effect immediately. To avoid unexpected behaviour please avoid reconfiguring the links
while the FELIX card in question is in active use in your system.

6.1.5 Guide to Valid E-link Configurations

The E-link configuration uploaded to a FELIX card is actually a set of instructions to a component known
as the Central Router. This is responsible for sending incoming data (in either direction) to the correct
remote end point, as defined by E-link. For FULL mode there is no such thing as an E-link, and so
the Central Router merely propagates a wide stream of bits across the link. In the GBT case, E-links
are defined as separate logical links within a given physical GBT link. E-links can have (in the current
implementation) three different bit widths, which given the link clock defines the maximum bandwidth

March 19, 2018 — 14:45 35

660

661

662

663

664

665

666

667

668

669

670

DRAFT

8 bit E-links 2 bit E-links

— L

Enable: ex7f80 Mode: 8x11111111 #Bits: 24242424+2+242+2

| v 2(07) | Egroup0
4 (06) ERLOh Egroup 1
)L Select E-group
all | Egroup 2 ¢)
Link encodin amis | 206 to configure
g »8b10b - | Egroup 3
dropdown 8 (05) COATHB
! - Egroup 4
EPATH: 5 v 2(05) Select to
40a) | Bb10P - :DECC(m <«————— activate &
e || I L ez configure EC
::E: T v 2(04) E-link
. I 16 (03) 8bl0b -~
| EPATH: 4
| v 203
EPATH: 3
4(02) | Bblob -
EPATH: 3
| v 2(02)
Toggle E-link ST S . .
88 > 8(01) Shioe - Replicate E-link
On/Off] sl configuration across
EPATH: 1 :bl;.:::” all E-groups
ol EPATH 1' /
e e Replicate E-link
v 2(00) fi .
EPATH: 0 | Sblobin: Repl 2 All €——————— configuration across
= Disable selected E-groups
From-Host/To-GBT \
Disable all E-links
in this E-group
16 bit E-links 4 bit E-links
(not currently
supported)

Figure 27: elinkconfig from-host panel (GBT mode). Various configuration options and tools are indicated as they
appear in the panel.

they can sustain. The widths are 2, 4 and 8 bits, running at 40, 80 and 160 MHz respectively. There is
currently no support for 16 bit E-links. A GBT link can therefore be considered as a logical aggregation
of low bandwidth links into one high bandwidth transfer. For full details please consult the official
documentation [3].

In ’Normal’ mode, a GBT link is 80 bits wide, and this puts an upper limit on the number of E-links. It is
therefore possible to have few wide 8 bit links, a larger number of narrower 2 or 4 bit links, or a mixture
of the two. Should a GBT be operated in *Wide’ mode (not currently widely used or tested) then a further
32 bits are available within the GBT link (i.e. 112 in total), allowing for more E-links. The structure of
a normal mode GBT frame is shown in Figure ??. It is up to the user to decide how much of the GBT
width to utilise as per their front-end needs. It is permitted to leave link bandwidth unused by not assigned
E-links to that part of the GBT frame.

March 19, 2018 — 14:45 36

671

672

673

674

675

676

677

678

679

680

681

682

DRAFT

Select if all links should be
configured simultaneously,
otherwise select link from dropdown

VeXsrv X l X
GBT Link v All links Developer
Qutput

Select FELIX card to

i GO to FLX-card: |0 ~ Version 1703231507-4500-GBT-4ch-709, RMap 304, mapping 1
configure

E-link Configuration Upload link

configuration
to FELIX

: Upload __]4-

Select size of generated Emulator Data (NB: based on GBT #0 config)

data chunks (bytes) Chunk size | 8 *| Data pattern Incr ~|ldles 8 |3)
Upload firmware
E-width dep random Upload =« data generator
configuration to
FELIX
Close

Select generated

data pattern 0x55/0xAA
(incrementing OxFF
counter or fixed 00
ProtoDUNE
patterns)

Figure 28: elinkconfig upload panel. Any features not indicated with arrows should be considered for experts only,
and used only under consultation with a FELIX developer.

GBT frame
(120 bits)

Header IC EC E-group 4 | E-group 3 | E-group 2 | E-group 1 | E-group O FEC
(4 bits) (2 bits) (2 bits) (16 bits) (16 bits) (16 bits) (16 bits) (16 bits) (32 bits)

Figure 29: Bit structure of a GBT frame, showing E-groups, IC and EC links, as well as GBT header and Forward
Error Correction (FEC).

Within a given GBT link, logical links are subdivided for management purposes into 16 bit wide ’E-
groups’. Each E-group logically contains a combination of E-links up to an aggregate of 16 bits of width,
looking at either extreme this means up to 8 of the narrowest 2 bit E-links at one end, or two of the widest 8
bit E-links at the other. The E-group is the unit of connectivity around which the elinkconfig interface
is built, with the to and from-host panels designed around E-group granularity.

Looking within the E-group, there is one further layer of link identification to consider. Each group
supports up to 8 logical ’E-paths’. These correspond to the logical connection end-points which the
Central Router supports. For each E-group it is therefore only possible to send data to 8 destinations,
which is designed to correspond to the maximum number of 2 bit E-links. However, the E-path structure
imposes an additional restriction on E-link assignment. Because of the routing structure the E-path end
points needed by E-links of different widths can overlap, meaning only a link of one width or the other
is possible. Consider the routing diagram presented in the to-host panel in Figure 25. This display is

March 19, 2018 — 14:45 37

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

71

712

713

714

715

DRAFT

designed to mirror the structure of the Central Router to make the dependencies as transparent as possible
to users.

The active 4 bit E-link in this panel is using E-path 2. This means not only that E-path 2 is unavailable
for the 2 bit E-link which could be assigned to that path (see the column to the right) but also the 2 bit
E-link for E-path 3, as the wider 4 bit link in E-path 2 overlaps with it. It is therefore possible to either
have the 4 bit E-link active, or one or both of the 2 bit links, but 4 bit link cannot be active at the same
time as either 2 bit link. Note that this doesn’t affect the E-link which could be active in E-path 1, as this
doesn’t overlap. In this case this link is disabled through user choice, not through any logical limitation.
However, if you wanted to enable the 8 bit wide E-link at E-path 1, this would overlap with all 2 and 4 bit
E-links to its right, meaning only it could be active.

To summarise, in order to build a valid link configuration no two links using the same E-path can be
active at the same time within an E-group. Depending on the width of the link in question this may also
disqualify other links of smaller width if they overlap with it. For this reason, elinkconfig will not
allow you to select overlapping links.

Within a given link map, each E-link can be configured to use different encoding formats as per front-end
requirements. This area is still subject to active development, and it is strongly recommended that users
work towards basing systems on 8b10b encoding. For FULL mode 8b10b is also the default.

6.1.6 Guide to common configuration tasks
6.1.6.1 Working with E-link configurations stored in files

elinkconfig can read and store configuration sets in .elc files. In order to load a previously existing
configuration set into the tool simply select ’Open’ from the global panel and choose the file to be loaded.
The GUI will be automatically updated to reflect the new configuration. From here you can modify the
configuration (if needed) by e.g. using the to and from-host panels to enable/disable E-links. Once your
changes are complete you can upload the new configuration to the FELIX card of your choice using
the *Generate/Upload’ button in the global panel. Make sure to upload both the link and data generator
configurations if you wish to use the latter. Finally, you can save your modified configuration to a file by
selecting ’Save’ from the global panel.

6.1.6.2 Modifying the existing E-link configuration on a FELIX card without a file

If you are working without .elc files and wish you modify the existing configuration on a card you must
first load it into the tool by selecting the card in question via the global panel and then pressing the ’Read
Cfg’ button. This will populate the GUI with the configuration currently active on the card. From here
you can modify the configuration as required and upload a new version to the card as advised above. You
can also save your configuration to a file.

March 19, 2018 — 14:45 38

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

DRAFT

6.1.6.3 Configure L1AInfo E-links to host

Users wishing to route Level-1 Accept information to network endpoints via the FELIX host may configure
any number of E-links for this purpose. Each such E-link will provide a 20-byte ‘.1 Alnfo’ block containing
information for each Level-1 Accept. The contents of the block are presented in Figure 30. Users can
view and edit the E-links currently selected for L1AlInfo transmission by selecting the ‘EC/TTC’ button
in the to-host panel. More details on this and other FELIX data structures is available in Appendix C.

0 FMT(8) Len(8)=20| reserved | BCID(12)
1 | XL1ID(8) L1ID(24)

2 orbit(32)

3 Trigger Type (16) | reserved(16)

4 LOID(32)

L1Ainfo_v01

Figure 30: The Level-1 Accept information message sent to the Back end software (20 bytes) as seen as five 32-bit
words.

6.1.6.4 Configure TTC E-links from host

Users may configure any number of to-front-end links for the purpose of transferring TTC information to
their electronics. The TTC data arriving at the FELIX card will be automatically decoded, and subsets
made available to users for relay to front-ends in a configurable manner. The subsets which can be sent
depend on the width of the E-link chosen for the transfer. By selecting the encoding box on the to-host
panel for any given link it should be possible to see which options are available for that link.

direct EPATH: 5

TTC-1
1 171e2 EPATH: 4
v 2(c3)

8bl0b -
EPATH: 3

4 (c2)

Figure 31: Example drop-down encoding menu for a 4-bit E-link. As this is a 4-bit link, the TTC-1 and TTC-2
options from Table 3 are available.

The current configuration sets are presented in Table 3, although this can evolve based on user requirements.
For example, 2-bit E-links can only be configured in *"TTC-0’ mode, meaning only the L.1A and the full,
non-decoded B-channel data stream can be sent. Alternatively, 4-bit E-links can be configured to send
L1Accepts, Bunch Counter and Event Counter Resets, and a choice of either the non-decoded B-channel
data stream or a user defined broadcast bit. Detector groups should communicate to the FELIX group
which bits in which locations they need.

March 19, 2018 — 14:45 39

734

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

DRAFT

Table 3: Possible TTC options (Brcst[7:2] are the TTC user defined broadcast command bits (Brest[1] is ECR,
Brest[0] is BCR). Bit 0 is the first bit transmitted out.

E-link option bit 7 bit 6 bit 5 bit 4 bit3 bit2 bitl bit0

0 2 bits B-chan LI1A
1 4 bits B-chan ECR BCR LIA
2 4 bits Brest[2] ECR BCR L1A
3 8 bits B-chan Brcst[S5] Brest[4] Brest[3] Brestf2] ECR BCR L1A
4 8 bits Brest[5] Brest[5] Brest[4] Brest[3] Brestf2] ECR BCR LIA
5 4bits BCR BCR BCR BCR
6 2 bits BCR BCR

6.1.6.5 Configure SCA E-links to/from host

SCA E-links are 2-bit wide HDLC-encoded links. This so-called EC mode is designed to carry slow
control information to and from any desired front-end location. Users may set any number of 2-bit
E-links (in either direction) to EC mode (not just the GBTx “EC” E-link) by selecting the "EC/TTC’
button (to host panel) or ’EC’ button (from host panel), activating a link and selecting HDLC encoding.
Communication with an SCA ASIC requires one TX and one RX link. FELIX performs the HDLC
encoding and decoding. Note that an OPC-UA server and client for the SCA ASIC are being provided to
allow high level communication with an SCA ASIC by user software.

6.2 Low Level Tools (System Status Monitoring & Control)

The following section will cover some general tools which allow you to monitor the state of your FELIX
system, as well as make configuration changes and reset the system as necessary. All tools provide more
detailed descriptions of functionality through their help output, accessible by running the tool with the
’-h’ option.

6.2.1 flx-info

The fix-info application is a command line tool which can print to the screen a range of monitoring and
configuration information for you FELIX card(s). By default you will be presented with some system
version and health status, as well as a basic link description. To access this default printout run the
following command:

$ flx-info

This will provide output similar to that which is presented in Figure 32, including general information
such as the firmware revision ’SVN version’ and link mode *GBT or FULL'. To produce more verbose
output pass the tool the -v or -vv option.

Beyond this basic output, flx-info also makes it possible to read many FELIX configuration registers in
detail. For a complete list of these options run flx-info with the *-h’ flag. This will produce output like
that shown in Figure 33.

March 19, 2018 — 14:45 40

759

760

761

762

763

764

765

766

767

768

DRAFT

General information

There are 1 FLX cards installed in this computer

Reg Map Versiocn 3.7

Card ID: FLX-708
FW version date: 02/07/17 00:04
SVN version: 5214

FIRMWARE MODE: GBT

Ooutput of lspci | grep Xil:
03:00.0 Communication controller: Xilinx Corperation FPGA Card XC7VX690T

Interrupts, descriptors & channels

Number of interrupts : 8
Number of descriptors: 8
Number of channels s 4

Links and GBT settings

Number of channels : 4
GBT Wrapper generated : YES
Optical transceivers : 4

Clock resources

Local clock in use : YES
Internal PLL Lock : YES

ADN2814 TTC Status: OFF

Figure 32: Default output of flx-info (assuming a VC-709 running GBT-mode firmware)

Usage: flx-info [OPTIONS] [COMMAND] [CMD ARGUMENTS]
Displays information about a FLX device.
options:
-d NUMBER Use card indicated by NUMBER. Default: 0.
-v Verbose mode.
-D level Configure debug output at API level. O=disabled, 5, 10, 20 progressively more verbose output. Default: 0.
-h Display help.
-v Display the version number
Commands :
cBT Shows GBT channel alignment status.
FMC_TEMP_SENSOR Display FMC temperature from TC74 sensor.
ADN2814 Display ADN2814 register Ox4.
cxp Display temperature and voltage from CXPl and CXP2
SFP Display information from Small Form Factor Pluggable transceivers
DDR3 Display values from DDR3 RAM memory
ID_EEPROM Display the first 32 bytes of the eeprom memory
sI5324 Display SI5324 status
515345 Display SI5345 status
LMK03200 Display LMK03200 status
ICS8I4Q Display ICSBN4Q status
EGROUP [channel] [RAW] Display values from EGROUP registers:
If no channel is specified, display all available.
Using Hexadecimal notation if RAW is specified.
ALL Display ALL information.

Figure 33: List of all flx-info features

6.2.2 flx-config

The flx-config tool allows users to modify specific FELIX control and configuration registers from the
command line. This should normally only be done on advice from a member of the FELIX development
team. Other features are also available, but these should be considered for experts only unless advised
otherwise by the development team. The two primary features users will use will be the ’list’ and ’set’
features. List mode will dump the values of all FELIX registers to the screen. This will be a large amount
of output, but can be searched with e.g. grep for the desired information. To run list mode execute the
following command:

$ flx-config list

To change a given register value use the ’set’ feature as follows:

March 19, 2018 — 14:45 41

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

DRAFT

$ flx-config set REGNAME=<new val>

In this case REGNAME corresponds to the register to be changed and <new val> to the new value be
stored. Once set you can use list mode to confirm the change.

6.2.3 flx-init

This tool has the ability to reset the GBT wrapper and transceiver, and should be performed every time
the FPGA is reprogrammed (including in case of loss of power). The tool should also be run if the GBT
fibres are disconnected at any point before attempting to transfer data once again.

To run the basic initialisation issue the following command:
$ flx-init

If you wish to use more features (if instructed by a member of the development team), consult the help
dialog as presented in Figure 34

Usage: flx-init [OPTIONS]
Initializes a FLX device.
General options:
-d NUMBER Use card indicated by NUMBER. Default: 0.
-h Display help.
-D level Configure debug output at API level. O=disabled, 5, 10, 20 progressively more verbose output. Default: 0.
-v Display verbose output.
—vv Super verbose mode.
-v Display the version number
GBT calibration options:
—s SOFT|FIRM Use SOFTWARE (SOFT) or FIRMWARE (FSM) alignment. Default: SOFT.
—a ONE|CONTIUNOUS Select alignment type. Default: ONE.
-t FEC|WideBus Select transmission mode. Default: FEC.
-e YES|NO Use the descrambler output value. Default: NO.
—f FILENAME specify which file will be used to calibrate the delay. Default: ../flx_propagation_delay.conf)
TTC calibration options:
-G NUMBER Get and display the status of a SI53xx
Legal values are:
1 = s15324
2 = sI5345
-c Set the registers of the ICS 8N4Q0O1L
-X filename Set a clock to a given frequency using the dangerous mode
~T mode set a clock to a given frequency
Legal values for mode are:
1 = (SI5324 only on FLX-709) 240 MHz
2 = TrCfx-v3 and BNL-711 (SI5345) 240 MHz usign legacy code
3 = TTCfx-v3 and BNL-711 (SI5345) 240 MHz
-I INSEL To be used in combination with -T or —X. The value given will be written into register HK_CTRL_FMC_SI5345_INSEL
Legal values are:
FLX-709: 0-->FPGA (LAO1), 1-->FMC OSC, 2-->FPGA (LA18)

Figure 34: List of all flx-init features

6.2.4 flx-reset

The flx-reset application makes it possible to selectively reset components of the FELIX firmware, or
the complete board, as needed given the situation. This should only be done if advised by a FELIX
development team member. To see the list of available parameters please consult the help output as
presented in Figure 35.

To reset a given component simply pass the name to flx-reset on the command line:

$ flx-reset COMP_NAME

March 19, 2018 — 14:45 42

787

788

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

DRAFT

Usage: flx-reset [OPTIONS]
Tool to reset different aspects from the card.
Commands :
Optiens:
FLUSH Flushes (resets) the main output FIFO toward Wupper.
RESET Resets the whole Wupper_core.
RECISTERS_RESET Resets the registers to default values.
SOFT_RESET Global application soft reset.
ADN2814 Reset the ADN2814.
ALL Do everything.
Options:
-d NUMBER Use card indicated by NUMBER. Default: 0.
-D level configure debug output at API level. O=disabled, 5, 10, 20 progressively more verbose output. Default: 0.
-h Display help.
-v Display the version number

Figure 35: List of all fix-reset features

6.2.5 flx-monitor

The flx-monitor application is a new application dedicated to presenting status information for LTC2991-
monitored components [14] aboard BNL-711 cards (and thus will not work with a VC-709). To see the
list of available parameters please consult the help output as presented in Figure 36.

Note - this tool is currently only available in the developer build, but is documented here for any users
already working with it. It will be available in the user release from version 3.9.2 (if built) and 4.X
onwards

Usage: flx-monitor [OPTIONS]
Read and decode data of the LTC2991 devices on a FLX-711

General options:

-d NUMBER Use card indicated by NUMBER. Default: 0.
-D level Configure debug output at API level. 0O=disabled, 5, 10, 20 progressively more verbose output. Default: 0.
-h Display help.
v Display the version number
Options:
-r Raw dump of the registers of the LTC2991

Figure 36: List of all flx-monitor features

6.3 Dataflow from Front-end via FELIX to FELIX host PC

6.3.1 fdaq

Fdagq is the primary tool for testing the FELIX data acquisition path. The tool can run in multiple modes,
from waiting for input for FELIX from a front-end source to using one of the two internal data generators
on the card. In both modes fdaq will measure and report throughput for the duration of the test. Data can
be dumped to a file or discarded upon receipt. If running in discard mode fdaq will check the integrity of
the data blocks and chunks it receives (e.g. block headers and chunk sizes). If an error is found the test
will, by default, stop and fdaq will report on the first detected error. However, if the ’-D’ option is used
the run will continue with a report printed on all errors received.

Note that this section assumes that your E-links and data generators are configured properly as specified
in Section 6.1. In this section we will cover various scenarios, but a list of all options can be found in the
help output, which will be similar to that shown in Figure 37.

Note: in full mode it will likely only be possible to run fdaq or a couple of seconds as you will rapidly
exceed the maximum rate at which you can write to disc, which will then cause the application to abort to
avoid buffer overflow. For reference, for a typical SSD this limit is approximately 300MB/s.

March 19, 2018 — 14:45 43

809

810

811

812

813

814

815

816

817

818

819

820

821

822

DRAFT

fdag version 17103100
Stream data from FLX-card to file(s). Whenever the set maximum file size
is exceeded a new file is created. Every second a status line
with data rates, data totals and memocry buffer status is displayed.
(NB: if no filename is provided all data is consumed while checking the data blocks,
i.e. blockheader and trailers; use -D to *not* terminate after an error is detected.)
Usage: fdag [-h|V] [-D] [-d <cardnr>] [-b <size>] [-e|E] [-f <size>]
[-1i <dma>] [-I] [-r <runnr>] [-t <secs>] [-X] [<filename-base>]

-h : Show this help text.

-V : Show version.

-D : Debug mode on, i.e. output additional info.

—-d <cardnr>: FLX-card to use (default: 0).

-b <size> : DMA (cmem rcc) memory buffer size to use, in MB (default 1024, max 4096).

-2 |E : Enable FLX-card data generator, internal (e) or

external (E) (default: false).

-f <size> : Maximum file size, in MB (default 1024, max 4096).

—1i <dma> : FLX-card DMA controller to use (default: 0).

-I : use interrupt to receiwe data (default: polling)

—r <runnr> : Run number to use in file names (default: none).

-t <secs> : Number of seconds to do acquisition (default: 1).

-T : Do not add datetime as part of file names.

-X : Stream data from individual e-links to separate files (default: false).
<filename-base>: WName to be combined with datetime+runnumber+counter of files created

Figure 37: List of all fdaq features

6.3.1.1 Running DAQ Test with External Data Source

The most simple configuration for fdaq to run in is to listen for any data coming into FELIX over the
GBT/FULL mode link and measure the bandwidth as this arrives at the host. In this mode the data is
discarded. The only parameter a user must define is the time in seconds for which fdaq should perform
the test. The default time is 1 second. The syntax is as follows:

$ fdag -t <time>

For a three second test the output will resemble Figure 38.

Consume FLX-card data while checking the data (blockheader and trailers);

stops when an error is encountered

Opened FLX-card 0, firmw 1707020004-5214-GBT-4ch-709 channels=4 (cmem buffersize=1073741824)
**START#* using DMA #0

-> 1 sec, Rates: recv 0.0 MB/s, file 0.0 MB/s; Total: recvd 0 B, file 0 B; Buffer: 0%, wraps 0
-> 2 sec, Rates: recv 0.0 MB/s, file 0.0 MB/s; Total: recvd 0 B, file 0 B; Buffer: 0%, wraps 0
-> 3 sec, Rates: recv 0.0 MB/s, file 0.0 MB/s; Total: recvd 0 B, file 0 B; Buffer: 0%, wraps 0
* %k STOP**

-> Data checked: Blocks 0, Errors: header=0 trailer=0

Exiting..

Figure 38: Output from fdaq test

If you would like to dump your data to a file for analysis simply specify a filename after the other command
line parameters:

$ fdaq -t <time> testfile

This will run as above and produce a time-stamped .dat file in the directory you are running with a name of
the format ’testfile-<timestamp>.dat’. You can specify the maximum size for the file with the *-f* option
specifying a size in megabytes (default 1024, max 4096). If you would like to split the input from multiple
E-links into different files use the ’-X’ option. The E-link number will be added to the filename.

March 19, 2018 — 14:45 44

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

DRAFT

6.3.1.2 Running DAQ Test with Internal Data Generation

A facility to use both data generators within the FELIX card for the purposes of testing is provided by
fdaq. The ’internal’ generator is connected directly to the data output path of the card (i.e. after input side
of the GBT link interface). Data from this generator therefore passes through the full FELIX firmware
data path with the exception of the link layer itself. The ’external’ data generator is connected to the
output path before the GBT layer. This means it can be configured to send data out of a GBT link. If
some loopback fibres are connected it is therefore possible to send data out of one GBT transceiver and
into another on the same FELIX and therefore test more of the data path. To access these options in fdaq
one must use the ’-e’ option for internal data generation and ’-E’ for external data generation. The output
from fdaq will be the same as shown for the external source tests. An example is shown in Figure 39.

Consume FLX-card data while checking the data (blockheader and trailers);

stops when an error is encountered

Opened FLX-card 0, firmw 1707020004-5214-GBT-4ch-709 channels=4 (cmem buffersize=1073741824

START (emulator) using DMA #0

-> 1 sec, Rates: recv 1273.7 MB/s, file 0.0 MB/s; Total: recvd 1273.7 MB, file 0 B; Buffer: 2%, wraps 1
-> 2 sec, Rates: recv 1276.0 MB/s, file 0.0 MB/s; Total: recvd 2549.7 MB, file 0 B; Buffer: 2%, wraps 2
-> 3 sec, Rates: recv 1277.0 MB/s, file 0.0 MB/s; Total: recvd 3826.8 MB, file 0 B; Buffer: 1%, wraps 3
*kSTOP**

-> Data checked: Blocks 3727840, Errors: header=0 trailer=0

Exiting..

Figure 39: Output from fdaq test with internal data generation

6.4 Dataflow from FELIX Host PC to Front-end Systems via FELIX
6.4.1 fupload

The FELIX software suite makes it possible to transfer data from the FELIX host PC via the FELIX card
to the front-end across a GBT link. This is done via the *fupload’ tool. With this tool it is possible to
transfer data either from a user defined file, or from the FELIX data generators, to a specified E-link across
a GBT connection. The full range of features of the tool can be seen in the help text, as presented in
Figure 40.

Note: This tool works with FULL mode firmware versions, but uses a GBT link up to the front-end.

6.5 FELIX Configuration Tools
6.5.1 felink

The felink tool is a link descriptor interpreter which allows you to work out the E-link ID for a given link
given GBT/E-group/E-path (or vice versa). This is intended to be used in conjunction with e.g. fupload
to allow users to work out which link ID they should target with their data. Some examples of possible
uses will be given below, but you can find all possible options in the help text, as shown in Figure 41.

A list of all valid E-links and coordinates can be seen with list mode, available with the following syntax:

$§ felink -1

March 19, 2018 — 14:45 45

849

850

851

DRAFT

fupload version 17052300

Upload data (test data or from file) to the given FLX-card e-link.

The e-link number is provided as a (hex) number directly (-e option),

as a set of -G/g/p options, or as a set of -G/I/w options, unless option -R is given.
Checks whether the e-link is valid and configured on the selected FLX-card,

unless option -c¢ is given.

while lines starting with certain characters may be used to:
insert a comment line
+ insert a packet of the given length containing bytes of the given byte value
& insert a configurable delay in microseconds between two packets
> change the e-link number to upload to

In ASCITI data files cone line is one data packet (hexadecimal byte values separated by spaces),

Usage: fupload [-h|V] [-D] [-d <cardnr>] [-b <size>] [-c] (-e <elink>
| (-G <gbt> (-g <group> -p <path>) | (-I <index> -w <width>)) [-i <dma>]
[-8 <bytes>] [-P <patt>] [-f <speed>] [-R] [-t <secs>] [<filename>]
-h : Show this help text.
-V : Show versicn.
-b <size> : DMA (cmem rcc) memory buffer size to use, in MB (default 16, max 4096).
-B : Contents of <filename> is read as binary data (default: ASCII).
-c : Do not check whether e-link is valid on FLX-card.
-d <cardnr>»: FLX-card to use (default: 0).
-D : Debug mode on, i.e. display blocks being uploaded.
-f <speed> : Speed up default upload rate of about 8MB/s by factor <speed> (default:1)
-1 <dma> : FLX-card DMA controller to use (default: 1).
-P <patt> : Test data pattern: O=incr, 1=0x55/0XAA, 2=0xXFF, 3=incr-per-chunk (default:0).
-r <repeat>: Test data repeat count: upload <repeat>*<bytes> bytes of data (default: 30).
-R : Upload data raw, not as CR from-host datapackets with header.
-8 <bytes> : Number of bytes per chunk to upload (default:32).
-t <secs> : Number of seconds for DMA time-out or wait until DMA done when 0 (default: 0).
Options to define the e-link to use:
-e <elink> : E-link number (hex) or use -G/g/p or -G/I/w options.
-E <elink> : an opticnal 2nd E-link number to upload to
(alternating with the first given E-link number).
-G <gbt> : GBT-link number.
-g <group> : Group number.
-p <path> : E-path number.
-1 <index> : Index of first bit of e-link in GBT frame.
-w <width> : e-link width in bite (2, 4, 8 or 16).
<filename> : Name of file with data to upload (ASCII or binary),
or test pattern data if no name is given.
Figure 40: List of all fupload features
felink version 16092800
Convert a given E-link number into GBT, egroup and epath numbers
as well as GBT and bit-index and width, or the other way around.
The E-link number is provided as a (hex) number directly (-e option),
as a set of -G/g/p options, or as a set of -G/I/w options.
Optionally checks if this E-link is valid and configured on a given FLX-card (option -d),
in either to/from-host direction.
Use option -1 to display a list of valid E-link numbers,
optionally in combination with -G or -g options to restrict the list
to certain GBT-links and/or egroups
Usage: felink [-h|V] [-d <cardnr>] (-e <elink>
| (-G <gbt> (-g <group> -p <path>) | (-I <index> -w <width>))
-h : this help text
-V : display version
-d <cardnr>: FLX-card to use (default: 0)
-e <elink> : E-link number (hex) or use -G/g/p or -G/I/w options
-G <gbt> : GBT-link number
-g <group> : Group number
-1 : Show a list of valid E-link numbers (use options -G, -g, -p to restrict the list)
-p <path> : E-path number
-I <index> : Index of first bit of e-link in GBT frame
-w <width> : E-link width in bits (2, 4, 8 or 16)

Figure 41: List of all felink features

6.5.1.1 Finding E-link ID from GBT/E-group/E-path of GBT/Bit address/width

Consider the example where a user wishes to know the E-link ID for a link connected to GBT link 2,

within E-group 3 and E-path 4. This can be done as follows:

March 19, 2018 — 14:45

46

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

DRAFT

$ felink -G <GBT ID> -g <egroup ID> -p <epath ID>

Filling these in gives results as in Figure 42, from which we can see that the E-link ID is 0x9C. The results
also show alternative coordinates for the E-link in terms of GBT bit address and width.

-bash-4.1% felink -G 2 -g 3 -p 4
E-link 09C = GBT #2 group #3 path #4, bit#56 width=2|4

Figure 42: Result of E-link ID calculation by GBT/E-Group/E-path

It is also possible to search for link ID using the GBT ID, bit address of the start of the E-link in the GBT
frame and E-link width. The syntax is as follows, noting that the index must correspond to a valid E-link
start point.

$ felink -G <GBT ID> -I <bit address> -w <E-link width>

If a user then wants to search for GBT 1, bit 4 and width 2 the results will be as per Figure 43. This
identifies the E-link in question as 0x42.

-bash-4.1$ felink -e 0x55
E-link 055 = GBT #1 group #2 path #5, bit#42 width=2 OR bit#40 width=8

Figure 43: Result of E-link ID calculation by GBT/bit address/width

These calculations can also be done in reverse, to yield the coordinates of a given known E-link ID. For
this use the following syntax:

$ felink -e <E-link ID in hex>

If as user then wants to know the coordinates of e.g. E-link 0x55 the tool can be used to give the results
in Figure 44. From this it can be seen that the GBT ID is 1, the E-group ID 2 and the E-path ID 5. An
estimate for the bit address and width is also displayed.

-bash-4.1$% felink -G 1 -I 4 —-w 2
E-link 042 = GBT #1 group #0 path #2, bit#4 width=2|4

Figure 44: Result of E-link coordinate search for a known E-link ID

6.5.2 fereverse

Note: this tool replaces 'feswap’, which is now deprecated.

The fereverse tool makes it possible to swap the bit ordering of data propagating through a designated
E-links (or set of links). For more details consult the help text, as shown in Figure 45.

In order to use the tool to toggle the bits for a given E-link use the following syntax:

§ fereverse -d <FELIX ID> -G <GBT ID> -g <E-group ID> -p 1 <set/reset>)

March 19, 2018 — 14:45 47

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

DRAFT

fereverse version 17060500

Enable, disable or display the bit-order reversal feature for e-links,
a setting per e-path (e-link).

Without keyword 'set/reset' the current setting is displayed.

Usage: fereverse [—h|V] [-d <cardnr>] [-G <gbt> [-g <group>] [-p <path>]] [-e <elink>] [-f] [-t] [set|reset]
-h : Show this help text.
-v : Show version.
-d <cardnr>: FLX-card to use (default: 0).
-G <gbt> : GBT-link number
-g <group> : Group number (default: all groups).
-p <path> : E-path number (default: all paths).
-e <elink> : E-link number (hex) or use -G/g/p options.

-f : Configure FromHost only.

-t : Configure ToHost only.

set : Enable e-link bit-reversal.
reset : Disable e-link bit-reversal.

Figure 45: List of all fereverse features.

In this case the ’set’ option indicates the bits should be switched and ’reset’ indicates deactivation of the
switch. It is also possible to pass the E-link ID directly using the *-e’ option. If neither set or reset
are specified the tool will simply report back the current status. Examples of both cases can be found in
Figures 46 and 47.

-bash-4.1% fereverse -d 0 -G 1 -g 1 -p 1 set
GBT 1 egroup 1 epath 1 TH: ENABLED
GBT 1 egroup 1 epath 1 FH: ENABLED

Figure 46: Using fereverse to enable endianness swap by specifying GBT/E-group and E-path.

-bash-4.1% fereverse -d 0 -e 49 reset
GBT 1 egroup 1 epath 1 TH: disabled
GBT 1 egroup 1 epath 1 FH: disabled

Figure 47: Using fereverse to disable endianness swap with E-link ID.

6.5.3 fgpolar

The fgpolar tool makes it possible for FELIX to adapt to the bit polarity of data produced by front-end
systems and sent via a Versatile Link [15] transceiver. The transceiver, by design, swaps the polarity
of incoming and outgoing bits (i.e. 0 becomes 1 and vice-versa). Some front-end systems may already
account for the swap in their design, but in order to send and receive packets to and from those who haven’t
this tool configures FELIX to automatically swap the bits for any designated GBT links (and therefore all
E-links within). For more details consult the help text, as shown in Figure 48.

In order to use the tool to toggle the polarity of a particular GBT link use the following syntax:
§ fgpolar -d <FELIX ID> -G <GBT ID> <set/reset>)

In this case the ’set’ option indicates the activation of a polarity switch and 'reset’ indicates deactivation
of the switch. It is also possible to modify the Tx and Rx directions separately using the ’-r’ and ’-r’
flags accordingly. By default both will be changed. The expected output from the tool can be found in
Figures 49 and 50.

March 19, 2018 — 14:45 48

890

891

892

893

894

895

DRAFT

fgpolar version 17060900
Configure or display the GBT transceivers RX and TX polarity.

Usage: fgpolar [-h|V] [-d <cardnr>] [-G <gbt>] [set|recset]
-h : Show this help text.
-V : Show version.
-d <cardnr>: FLX-card to use (default: 0).
-G <gbt> : GBT-1link number.
-r : Configure RX only.
-t : Confiqure TX only.
set : Set reverse polarity for given GBT transceiver(s).
reset : Set default polarity for given GBT transceiver(s).

(without keyword set/reset the current setting is displayed)

6.5.4 feconf

Figure 48: List of all fgpolar features.

-bash-4.1% fgpolar -d 0 -G 1 set
GBT 1 RX polarity: 1
GBT 1 TX polarity: 1

Figure 49: Using fgpolar to swap bit polarity.

-bash-4.1§ fgpolar -d 0 -G 1 reset
GBT 1 RX polarity: 0
GBET 1 TX polarity: 0

Figure 50: Using fgpolar to disable bit polarity swap.

feconf is a command line tool providing some of the functionality of elinkconfig. With this tool it is
possible to upload a pre-defined E-link configuration file (.elc format) to a FELIX card. Alongside the
basic configuration, feconf also makes it possible to configure the FELIX firmware date generators. For
more information on the meaning of each parameter, consult Section 6.1 on elinkconfig. For a full list of
commands consult the help text, as shown in Figure 51.

feconf wversion 1

and generate and

Usage: feconf [-
-h :
-V
-d <cardnr> :
-n
-R H
—-s <chunksz>:
W
-I <idles>
<filename>

7032900

upload matching emulator data contents.
h|Vv] [-d <cardnr>] [-s <chunksz>] [-w] [-R] [-I <idles>] <filename>
Show this help text.

: Show version.

FLX-card to use (default: 0).

: Don't write the configuration, just read and display some info.
: Generate emulator data chunks with 'random' size.

Emulator data chunksize to generate (default: 32).

: Generate emulator data chunksize dependent on e-link width (default:
: The number of idles between generated emulator data chunks (default:
: Name of .elc file with FLX-card e-link configuratien.

Upload an e-link configuration from file (generated by elinkconfig) to the given FLX-card,

false) .
8).

March 19, 2018 — 14:45

Figure 51: List of all feconf features.

49

896

897

898

899

900

901

902

903

904

DRAFT

6.5.5 femu

The femu tool gives users command line control over the FELIX firmware data generators, both in the
from and to host directions. The full range of features of the tool can be seen in the help text, as presented

in Figure 52.

femu version 17040400
show or configure 'FanOut-Select' registers and start/stop emulator.

Usage: femu [-h|V] [-d <cardnr>] [-e|E|n] [-1
-h : Show this help text.
-V : Show version.
-d <cardnr>: FLX-card to use (default: 0).
-e|E|n : Enable FLX-card data emulator, internal (e) or external (E) or disable emulator
When no option is given the current status is displayed.
-f : When disabling emulator set TOHOST FANOUT to emulator (default: to external).
-1 : 'Unlock' FanOut-Select registers.
-L : 'Lock' FanOut-Select registers.

(n).

Figure 52: List of all femu features

6.5.6 feto

The feto tool gives users command line control over the FELIX block timeout at the level down to
individual E-links. If enabled FELIX will time out incoming data blocks taking longer than a designated
period to arrive and attach a timeout trailer to the block. The block will then be transferred to the host as
normal. The full range of features of the tool can be seen in the help text, as presented in Figure 53.

feto version 17072600
Enable, disable or display the instant time-out setting,

or the TTC time-out and associated counter.

(group of) time-outs i1s displayed.

-d <cardnr>: FLX-card to use (default: 0).

-G <gbt> : GBT-link number.

—-g <group> : Group number (default: all groups).

-p <path> : E-path number (default: all paths).

-e <elink> : E-link number (hex) or use -G/g/p options.

-T : Read or configure TTC time-out.
set : Enable time-out.
reset : Disable time-out.

<globentr> : Global or TTC time-out counter value to set.

a setting per e-path (e-link), or the so-called global time-out
and associated time-out counter (number of clocks until time-out),

Without keyword 'set/reset' the current setting of the requested

Usage: feto [-h|V] [-d <cardnr>] [-G <gbt> [-g <group]| [-p <path>]]
[-e <elink>] [-T] [set|reset] [<globcntr>]
-h : Show this help text.
-V : Show version.

Figure 53: List of all feto features

March 19, 2018 — 14:45

50

905

906

907

908

909

910

DRAFT

6.5.7 fllash

The fHash tool is designed specifically for programming FLASH memory modules aboard BNL-711 from
a .mcs formatted firmware image. Note that at this point, any reprogramming of the fpga from flash
will require either a reboot or PCle hotplug operation (see Section 4.2.6.1 for details) to return the board
to normal operation with the new firmware image in place. A full listing of commands is available in
Figure 54.

fflash version 17120600
Tool for programming, verifying, erasing or dumping firmware images
in BNL-711 FLX-card flash memory, or loading the selected firmware into the FLX-card.

Usage: fflash [-h|V] [-d <cardnr>] -f <flashnr> [-E] [-D] [-F] [-L|I]
[-s <saddr>] [-u <uaddr>]] [<filename>] [preg]
-h : Show this help text.
-V : Show wversion.
-d <cardnr> : FLX-card to use (default: 0).
-D : Read and display contents of the selected flash partition or flash file.
-E Erase the selected flash partition.

-f <flashnr>: Flash memory segment partition [0..3] to dump, to erase,
to verify or to program (no default).

-F : Use the (slow) word-by-word instead of (fast) page programming method.
-I : Generate an INIT B pulse on the FLX-card (to reset flash devices) .

-L : Load firmware from the given flash partition inte to card.

-5 <addr> : I2C-switch I2C-address (hex, default=0x70, with -L option).

-u <addr> : uC I2C-address (hex, default=0x68, with -L option).

<filename> : Name of MCS file to dump, verify or program.

prog : Literal text string to initiate flash programming

(or else flash verification will take place).
Examples:
Read and dump to screen flash memory image partition #2:
fflash -f 2 -D
Erase flash memory partition #2:
fflash -f 2 -E
Verify flash memory partition #2 against mcs file <filename>:
fflash -f 2 <filename>
Program flash memory partition #2 with the contents of mcs file <filename>:
fflash —-f 2 <filename> prog
Load flash memory image partition #2 into the card:
fflash -f 2 -L
Extra:
Read and dump to screen the memory image in mes file <filename>:
fflash -D <filename>

Figure 54: List of all fllash features.

March 19, 2018 — 14:45 51

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

DRAFT

6.6 General Debugging Tools
6.6.1 fcheck

fcheck is a debugging tool which can analyse the .dat files produced by the fdaq tool and check for data
integrity issues. The tool will perform checks on a file to a specified degree of severity. For more details
on each level consult Figure 55. As well as running checks, the tool can also be used to dump selected
data blocks to screen, either split into data chunks or as raw data, to facilitate closer inspection of any
issues found. To run the check, specify the file name and check detail level as follows:

$ fcheck -B <severity> testfile.dat

A full list of features available with fcheck can be seen in the help text, as shown in Figure 55

fcheck version 17102000

Usage: fcheck [-h|V] [-A] [-B <id>] [-c|C|D] [-F <blocks>] [-S <blocks>] [-e <elink>] [-t|T] [-0] <filename>
-h : show this help text.
-V : Show version.
-A : Interpret chunks that could be GBT-SCA frames.
-B <id> : Do a check on (emulator) data blocks according to <id>,

and display a data summary (default: 2).

0: Check for proper block headers at lk boundaries,
for each block 1 line of ocutput is produced.

1: Same as 0, but only when an error is found a line is output.

2: Full integrity checking of blocks, starting from
the block trailer going through all chunks

3: Same as 2, including a check on expected emulator data payload,
which must constitute an incrementing byte.

4: Same as 3, but inconsistent maximum values of L1ID are not reported.

-c : Display data 'raw' datablocks (default: chunk data) (option -F)
-c : Display chunk data bytes only, nothing else.
-D : Display only whole data chunks, i.e. the user's data frames.

—e <elink> : E-link number (hex) to filter for block check or bleock display.

-F <blocks>: Dump <blocks> 1K data blocks to display (overrules data check option -B).
Chunk types: BOTH="<<", FIRST="+4+", LAST="&&", MIDDLE="==", TIMEOUT="]]", NULL="@E"
QUTOFBAND="##" and "TE" for chunk truncation/error.

-8 <blocks>: Skip <blocks> of data blocks before starting check or display.

-t : Do NOT report chunk truncation/error/CRCerror.

-T : Do NOT report chunk CRCerror.

-0 : Do NOT display time-out chunkdata bytes (zeroes).
<filename> : Name of file containing data to check or display.

Figure 55: List of all fcheck features

6.6.2 fedump

The fedump tool is designed to make it possible to dump data arriving at FELIX to the screen for debugging
purposes. Users of the tool can filter the data stream by E-link ID and FELIX card number, as well as
having the option of displaying the data in raw format. More advanced options are available, but should
only be used in consultation with the FELIX developers. For more details consult the help text, as shown
in Figure 56.

6.6.3 fec

The fec tool is designed for the communication with a GBT-SCA chip present on a remote hardware
system connected to FELIX via GBT links. Commands are read and written using the EC link component
of the GBT protocol. The tool makes it possible to send pre-programmed signals to the GBT-SCA, as well
as custom command strings. For a full list of commands consult the help text, as shown in Figure 57.

March 19, 2018 — 14:45 52

931

932

933

934

935

936

937

938

939

940

941

942

943

944

DRAFT

fedump version 17091900
Dump selected E-link chunk data (optionally block-by-block) received from an FLX-card to screen.
Chunk types are delimited by:

BOTH="<<", FIRST="++", LAST="&&", MIDDLE="==", TIMEQUT="]]", NULL="@@", OUTOFBAND="4##"
Usage:

fedump [-h|V] [-A] [-c|D] [-d <cardnr>] [-e <elink>] [-1 <dma>] [-I] [-0]

-h : Show this help text.

-V : Show wversion.

-A : Interpret chunks that could be GBT-SCA frames.

-c : Display data 'raw', block-by-block (default: chunk data).

-d <cardnr>»: FLX-card to use (default: 0).

-D : Display only whole data chunks, i.e. the user's data frames.

-e <elink> : E-link number (hex) to filter out for display (default: no filter).

-i <dma> : FLX-card DMA controller to use (default: 0).

-I : Use interrupt to receive data (default: peolling).

-0 : Do not display time-out chunkdata (zeroes).

Figure 56: List of all fedump features.

fec version 17111700

*** UNDER DEVELOPMENT **#

Tool to upload various commands to a GBT-SCA chip via any 2-bit wide, HDLC encoded e-link
including a GBT link's EC channel.

Receive (and display) GBT-SCA replies using option -Z, or use fedump or fdag.

Usage:

fec [-h|V] [-d <cardnr>] [-i <dma>] [-I] [-G <gbt>] [-g <group>] [-p <path>] [-t <ms>] [-x <par>] [-C] [-R] [-T] [-2] [<ops>]
-h : Show this help text.
-v : show versien.
-d <cardnr>: FLX-card to use (default: 0).
-i <dma> : FLX-card DMA controller to use (default: 1).
-1 : use interrupt to receive data (default: polling)
-G <gbt> : GBT-link number (default: 0).
-g <group> : Group number (default matches GBT EC 'group' = 7).
-p <path> : E-path number (default matches GBT EC 'path' = 7).
-r <repeat>: Number of GPIO/ADC/DAC cperations te perform (default: 1).
-c : Send GBT-SCA connect (HDLC control)
-R : Send GBT-SCA reset (HDLC control)
-T : Send GBT-SCA test (HDLC control)
-t <ms> : Time between some of the ops, in ms (default: 100).
-x <par> : Parameter to use in operations, e.g. GPIO number, ADC or DAC channel (default: 0).
-z : Receive and display the GBT-SCA replies.
<ops> : String of chars indicating which operation(s) to perform:
0=GPIO-out, i1=GPIO-in, a=ADC, d=DAC, I=I2C (no-string=default: none).
Examples:

Blink VLDB (connected to GBT link #3) LED connected to GPIO #18

20 times with a rate of 5Hz (100ms ON, 100ms OFF) :
fec -6 3 -t 100 -r 20 -x 18 o

Read GPIO inputs (GBT-SCA on GBT-link #3's EC-channel) 20 times with a rate of 10Hz:
fec -6 3 -t 100 -r 20 i

Figure 57: List of all fec features.

6.6.4 fuptest

The fuptest tool makes it possible to transfer data from the FELIX data generators (with more fine-grained
pattern control than with ()fupload), to defined E-links across a GBT connection. The tool will then
expect to receive the same data back via loopback (via the same link or another). The full range of features
of the tool can be seen in the help text, as presented in Figure 58.

Note: This tool works with FULL mode firmware versions, but uses GBT links up to the front-end.

6.6.5 fplayback

fplayback is an advanced testing tool (GBT mode only) with the ability to upload data to the FELIX card
for transfer out of a the GBT link (multiple E-links) and then receive the same data back before confirming
it’s integrity by comparison with the original. The data files expected by this tool are the of the .dat format
produced by fdaq. The tool requires that your FELIX card be connected either with external loopback
fibres or for a longer loop via a remote front-end system. In order to use the tool pass the .dat filename
as well as optional parameters for amount of blocks to transfer (-F, default all) and to data from a given
E-link (-e). For example, to send 500 blocks from ’testfile.dat’ for E-link 5 do the following:

March 19, 2018 — 14:45 53

945

946

947

948

949

950

951

952

953

954

955

956

DRAFT

fuptest version 17022800

Uploads test data to every E-link of the given width of the given FLX-card in turn;
optionally select a single GBT (-G).

Checks whether the e-link is valid and configured on the FLX-card,

unless option -c is given.

Expects to receive the data in a loopback on the same e-link number,
unless option -e is given.
The data is checked byte-for-byte for correctness.

Usage: fuptest [-h|V] [-d <cardnr>] [-b <size>] | [-G <gbt>]
[-s <bytes>] [-r <chunks>] [-P <patt>] [-w <width]
[-c] [-e] [-T] [-R]
-h : Show this help text.
-V : Show version.
-b <size> : DMA (cmem rcc) memory buffer size to use, in MB (default 16, max 4096).

: Do not check whether e-link is valid on FLX-card.
-d <cardnr>: FLX-card to use (default: 0).

-e : Loopback not necessarily on the same e-link number (default: receive = upload e-link).
-G <gbt> : GBT-link number (default: all).

-I : use interrupt to receive data (default: polling)

-P <patt> : Test data pattern: O=incr, 1=0xX55/0xXAA, 2=0XFF, 3=incr-per-chunk (default:0).

-r <chunks>: Test data chunk count: uplcad <chunks>*<bytes> bytes of data (default: 30).

-R : Do not receive replies (use e.g. 'fedump' for that).

-8 <bytes> : Number of bytes per chunk to upload (default:32).
-w <width> : E-link width in bits (2, 4, 8 or 16, default:2).

Figure 58: List of all fuptest features

$ fplayback -e 5 -F 500 testfile.dat

For an fplayback to be successful there are 2 conditions to be met: firstly, the integrity check should not
return any errors (provided the original file is without errors), and the number of chunks (and bytes) per
E-link written to the resulting file should be identical to the original file.

For a full list of options for fplayback you can view the help information, as shown in Figure 59.

fplayback version 17100900
Uplecad data from FLX-card data blocks from an 'fdag'-generated file to an FLX-card.

Usage:
fplayback [-h|V] [-d <cardnr>] [-F <blocks>] [-1 <dma>] [-e <elink>] [<filename>]
-h : Show this help text.
-V : Show version.

-d <cardnr>: FLX-card to use (default: 0).
—e <elink> : Upload only the data blocks for E-link number <elink>.
-F <blocks>: Number of blocks to upload (default: all in file).
—f <speed> : Speed up default upload rate of about 8MB/s by factor <speed> (default:1l)
-1 <dma> : FLX-card DMA controller to use (default: 1).
<filename>: Name of file with data blocks to upload.

Figure 59: List of all fplayback features

6.7 Remote Hardware Command and Configuration Tools

6.7.1 fic

The fic tool is designed for communication with a GBTx chip present on a remote system connected to
FELIX via GBT links. Commands are read and written using the IC link component of the GBT protocol.
With this tool it is possible to read and write data to a specific GBTx address for the propagation of
command and configuration information as part of debugging or preparation of front-end components for
a data taking session. For a full list of commands consult the help text, as shown in Figure 60.

March 19, 2018 — 14:45 54

957

958

959

DRAFT

fic version 17082800

Tool to read or write GBTX registers through the IC-channel of an FLX-card GBT link:

read or write data byte from or to the given GBTX register address

at the receiving end of the given FLX GBT-link or

write to multiple consecutive GBTX registers with data read from a file.
Provide a file name *or* option -a with an address and an optional
additional byte walue to read or write a single register.

Without optlon -a or file name all registers are read out and displayed
either in one IC read operation or one-by-one (option -o).

Usage:
fic [-h|V] [-d <cardnr>] [-G <gbt>] [-I <i2c>»] [-T] [-a <addr> [<byte>] | <filename>]
-h : Show this help text.
-V : Show version.
—a <addr> : GBTX register address (hex) to read or write.
—d <cardnr>: FLX-card to use (default: 0).
-G <gbt> : GBT-link number.
-I <i2e> : GBTX I2C address.
-o : When reading all registers, do it one-by-one (default: one multi-reg read op)
-T : Display time the operation took (in us).
<byte> : Byte value (hex) to write to GBTX register <addr> (option -a).
<filename> : Name of file with GBTX register data to uplead.
Examples:
fic -6 1 -1 3
fic -G 1 -I 3 gbtx-config.txt
fic -6 1 -I 3 -a 34
fic -G 1 -I 3 -a 34 56

Figure 60: List of all fic features.

6.7.2 fgconf

March 19, 2018 — 14:45

The fgconf tool makes it possible to read and write GBTx registers accessible via i2¢ through a GBT-SCA
chip. For a full description please consult the help output as per Figure 61:

55

DRAFT

fgeconf version 17040700
Tool to read or write GBTX registers via an I2C-channel of a GBT-SCA chip,
connected to any FLX-card GBT (2-bit HDLC) E-link:
read or write byte from or to the given GBTX register address or
write to multiple consecutive GBTX registers with the contents of a file.
(ASCII file: 1 byte value (hex) per line,
e.g. TXT file generated by the GBTX Programmer tool).
Provide a file name *or* use option -a with an optional additiocnal byte value
to read or write a single GBTX register or without option -a to read all registers.

Usage:
fgeonf [-h|V] [-d <cardnr>] [-G <gbt> [-g <group> -p <path>]] [-e <elink>] [-R] [-W]
-C <ichan> -I <iaddr> -a <addr> [<byte>] | <filename>
-h : Show this help text.
-V : Show version.
-d <cardnr>: FLX-card to use (default: 0).
-G <gbt> : GBT-link number.
-g <group> : Group number (default: 7=EC).
-p <path> : E-path number (default: 7=EC).
-e <elink> : E-link number (hex) or use -G/g/p options.
-R : Reset GBT-SCA.
-W : Read writable registers only (default: all).

-C <ichan> : GBT-SCA I2C channel.
-I <iaddr> GBTX I2C address.

-a <addr> : GBTX register number (decimal).
<byte> : Byte value (hex) to write to GBTX register <addr> (option -a).
<filename> : Name of file with GBTX register data to write to consecutive registers.

=> Examples:
Read all registers of GBTX (I2C address 1) connected to GBT-SCA I2C-channel 0,
GBT-SCA connected to FLX-card GBT link 3 EC-link:
fgeconf -G 3 -C 0 -I 1
Read GBTX register 32:
fgeconf -G 3 -C 0 -I 1 -a 32
Write 0xA5 to GBTX register 32:
fgeconf -G 3 -C 0 -I 1 -a 32 AS
Write contents of GBTX-conf.txt to GBTX registers:
fgeconf -G 3 -C 0 -I 1 GBTX-conf.txt

Figure 61: List of all fgconf features.

March 19, 2018 — 14:45

56

960

961

962

963

964

965

966

967

968

969

970

971

972

DRAFT

7 Felixcore Application and NetIO

7.1 Operational Principles

The FELIX core application (called felixcore) is the central process of a FELIX system. The user interacts
with the felixcore application via network endpoints to receive data from E-links or to send data to E-links.
Systems such as software RODs, DCS, calibration and monitoring systems all connect with FELIX via
felixcore.

Felixcore also supports monitoring of operational data via a web front-end and publishing of E-link
information via the FELIX bus system.

FLX Card Card Reader =8 Network
(PCle) Thread Worker Thread Interface
NetlO (PCle)
I Block Queue
L : .
FLX Card PCle Packet L NetlO Event Loop Thread
AP Decoder 1 1
e i 1
U Buffer }
~—| PCle Packet Encoder) NetlO Event Loop Thread
Statistics and Monitoring Thread

Figure 62: The architecture of the FELIX core application.

Figure 62 shows a diagram of the architecture of the FELIX core application. In the case of a system with
multiple FLX cards, one application can be run per card.

7.2 Configuration

The configuration parameters of the felixcore application are listed in Figure 63. The parameters can be
passed to the application either on the command line or as part of a file.

March 19, 2018 — 14:45 57

DRAFT

felixcore - FELIX Core Application

Usage: felixcore [options]
Run with card: 'felixcore'
Run with file: 'felixcore -f <file> --notoflx'
Run with data generator: 'felixcore -g -—-notoflx’'

A1l Options:

General Options:

-t, ——threads N Run with the specified number of threads (0 = number of cores) [default: 0]
-ps ——port N Run on selected port number [default: 12345].

-r, —-recv_port W Receive slow control data on this port [default: 12340].

-P, —-busy port N Receive busy centrel signals on this port [default: 123417.

-B, —-netio_backend (posix|fi_verbs) Use the given NetIO backend [default: posix]

-1, —-logfile <file> Write logs to the given filename.

-b, —-buffer W Free Buffer size in kBlocks per thread [default: 2000].

-g, —-data_generator Use internal data generator.

--ttc_generator Use internal ttc generator elink #0.

-—gueus (rwglthkbk) Use gqueue 'rwg' or "tbb' [default: rwqgl

——-nocheck Do not check block before dispatch.

—--notoflx Do not start the To-FLX thread

--felix_ id <id> Elink offset for this FelixCore [default: 0].

--data_interface <iface> Interface to publish data [default: default].

--menitoring interface <iface> Interface teo publish monitering informatieon [default: default].
——noweb Disable web server.

-w, ——web_port W Port for webserver [default: 8080].

Commandline Options:

-h, --help Display this help.

-V, —-version Display version.

-c¢, ——config <file> Load configuration from the specified YAML file.
—-config-write <file> Store configuration in the specified YAML file.
-f, ——file <file> Use the given filename as input.

Card Options:

-m, ——memory N Allocate CMEM memory in Gbyte [default: Z2].

——init Execute init only.

—-interrupts Use interrupts.

--poll_time T Poll time in us [default: 1000].

——dma D Use dma channel [default: 0].

——emu_to host <pattern> Pattern to switch on emulators to Host [default: 0].
——emu_from host <pattern> Pattern to switch on emulators from Host [default: 0].
—-elinks <elinkrange> Elink numbers/number range.

Data Generator Optlons:

—-fixed_chunks Use fixed chunk size.

—-chunk_size_ fixed N Fixed size of chunks [default: 1018].
—-rate_control hool Use rate control.

—-chunk_size min N Minimum size of chunks [default: 128].
——chunk_size max N Maximum size of chunks [default: 4096].
—--e_link min N Minimum number of elinks [default: 50].
—--e_link max N Maximum number of elinks [default: 150].
—-e_link ID min <id> Minimum ID of elinks [default: 1].
——e_link ID max <id> Maximum ID of elinks (<2048) [default: 255].
——period T Period in ms [default: 100].

—-max_overshoot T Max overshoot in ms [default: 10].
——duration T Duration in s (0 = run forever) [default: 0].

Debug Options:

——-data (real | short | long | mixes | none) Stream data as given type [default: reall].
—--nostats Disable statistics.

—--display_stats Print out statistics.

—-nohistos Disable histograms.

—--trace Enable tracing.

Figure 63: Command line interface options for the felixcore application. Each option can also be set in the
configuration file. The option key in that case is the long option without the leading dashes.

March 19, 2018 — 14:45 58

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

DRAFT

7.3 Monitoring
7.3.1 FelixCore Native Monitoring

The felixcore application provides monitoring and status information via a web front-end. By default the
web front-end is available on port 8080. To access the web front-end use a web browser and point it to
http://hostname:8080. Figure 64 shows a screenshot of the web app.

Info Configuration | Statistics | Bus

General Free Memory Elinks From-Host Threads
oo = # 16195532
timestamp 1492515998 ”‘
2007 110
blocks 16 MBlocks 7/\‘)\/,;/\ RN A_A e
£ MUY > | AWy .
shortchunks 079 MChunks
m
block_rate 054 MBlocks /s o
1346
chunk_rate 026 MChunks /s . !] :
0 —1 —2 —3 —4 kit Thread #
throughput 0 Mbyte/s
Rates Elinks To-Host
max_queue_size 1 Blocks ot
avg_queue_size 06 Blocks 00k ok
s
Card
04 a
No data available in table 100k
s
E 134620 e
3 500 1000 b x* 3
Block Rate [MBlocks/s] — Chunk Rate [MChunks/s] Blink oyt
malformedSubchunks 0 Chunks
Queue Size Ports Subchunk Length
malformedChunks 0 Chunks =12 # 23963565
15 0
malformedBlocks 0 Blocks
hunks 0 Chunks .
100 P
error_chunks 0 Chunks 2 * 5
truncated_chunks 0 Chunks S \ T N/ Y/ \VATAN' &
[\) M AA 251
/ AW
13462 13630 o o
o 500 1000 s00
0 —1 2 —3 —a Elink byte

Throughput Queue Size Subchunk Types

Figure 64: Screenshot of the integrated felixcore monitoring web app

7.3.2 Monitoring with felix-web-mon

Felix-web-mon is a user oriented web visualisation application for real time monitoring of FELIX metrics
through live charts as well as visualisation of historical data. It uses the FELIXbus system to auto-
discover FELIX nodes in the same local subnet. Metrics are continuously recorded into a mongodb
database, making it possible to plot historical charts at a later time. Users should make use of this tool if
they require more flexible monitoring with the option of historical archiving of monitoring data.

7.3.2.1 Compilation

Felix-web-mon is currently provided as standalone package. Users wishing to compile it should get the
source and instructions from gitlab at the address below.

https://gitlab.cern.ch/atlas-tdag-felix/felix-web-mon

March 19, 2018 — 14:45 59

 https://gitlab.cern.ch/atlas-tdaq-felix/felix-web-mon

DRAFT

a8 7.3.2.2 Usage

ss9 When installed on a machine (see README.md in gitlab for detailed installation instructions), the web
s application can be accessed under the address <hostname>:8000. Here users will be presented with a
991 front page as shown in Figure 65.

FELIX HOSTS

Statistics Configuration
92EB87 Throughput Free Memory Rates
acesse P .
MRV Vb v via v ot o T 0
o Random data — 0 1 2 -3 Random data — Block Rate [MBlocks/s]
Random data — 0O 1 2 3 - CMEM 0 Chunk Rate [MChunks/s]
Queue Size Elinks To-Host Chunk Length
#: 15942825 #: 107581484
o]
Random data — 0 1 2 —3 ‘|.‘.-.< s m :.'.::r
Subchunk Length Subchunk Types Queue Size
#:115190421 #:115190421 #: 15826856, 0: 12939255
u o
2z 0 o 0 2z 0o 0
Figure 65: felix-web-mon front page
992 The user interface consists of the following parts:
993 * Menu bar: as shown on the top left of Figure 65. A simple menu with 2 links: a folder icon for
994 history data plots, and a live link to come back to live mode.
995 » Status bar: as shown in Figure 66. Displays some information like the client-server connection
996 status, the number of connected hosts and the mode ’live’ or ’history’. Figure-12: Status bar

997 e FELIX hosts list: as shown in Figure 67. Displays the FELIX hosts that are connected and

998 automatically discovered by the FELIXbus API. An icon next to the name of each item shows the
999 status "disconnected’ (red) or ’connected’ (green) of each host.

1000 * Charts area: In this panel there are tabs Statistics, Configuration and History (hidden by default)
1001 for each connected FELIX host. The Statistics tab (Figure 14), loaded by default, shows live charts
1002 of metrics. Clicking on an item in the FELIX hosts list on the left displays the chart area of the
1003 corresponding host.

1004 * The Configuration tab: showing the configuration data of corresponding FELIX host (Figure 68).
1008 * The History tab: shown only when a user clicks to load history data on the folder icon in the menu
1006 bar (Figure 69).

March 19, 2018 — 14:45 60

DRAFT

Server status Mode Connected Hosts

RUNNING LIVE 1

Figure 66: felix-web-mon status display

Server status Mode Connected Hosts

RUNNING LIVE 1

Figure 67: felix-web-mon host list

FELIX HOSTS Statistics Configuration

L General Card Data Generator
Name Value Unit Name Value Unit Name Value Unit
logfile memory 2 MBlocks fixed_chunks false
debug_dump_chunks false tp Oxfiffffif byte rate_control_bool false
threads 1 interrupts false period 100 s
port 12345 poll_time 1 ms max_overshoot 10 ms
port_recv 12340 init false duration 0 ms
netio_backend posix dma 0 e_link_min 50
data_generator false emu_to_host 0x00000000 e_link_max 150
queue wag emu_from_host 0x00000000 e_link_ID_min 0x00000000
nocheck false e_link_ID_max 0x000000ff
notoflx true BT chunk_size_fixed 1 kbyte
buffer 2 MBlocks chunk_size_min 130 byte

Name Value Unit

felix_id 0x00000000 chunk_size_max 4.1 kbyte
interface default

nrumah falea

Figure 68: felix-web-mon config page

March 19, 2018 — 14:45 61

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

DRAFT

Monitoring
FELIX HOSTS Server status Mode Connected Hosts
CASE4S v RUNNING HISTORY 1
Statistics Configuration History
throughput memory rates

0
10:00 10:30 11:00 10:00 10:30 11:00 10:00 10:30 11:00

o 0 Block Rate — Chunk Rate

queue_size
2 097 500
2 097 000
2 096 500

2 096 000
10:00 10:30 1100

Figure 69: felix-web-mon history page

7.4 FelixCore Examples

When running with multiple threads, FELIX will publish data on multiple TCP/IP ports. The examples
are all started with 1 thread using the option -t 1. This ensures that all data is published on a single
TCP/IP port (default 12345), which facilitates debugging. To read out data from a felixcore application
that is started as in the examples below, use a client (for example netio-cat or fatcat), and point it to
port 12345 of the FELIX host. Of course, running with only one worker thread limits performance and,
depending on the workload, FELIX might not be able to keep up with the load. In that scenario increase
the number of worker threads accordingly. The tool felix-bus-1ist can be used to obtain the mapping
of E-links to TCP ports of a FELIX system.

A running felixcore instance can be stopped by pressing Ctrl+\.

7.4.1 Tests without an FLX Card

* Starting felixcore with input from a file (no card required):
$ felixcore -t 1 -f path/to/file.blocks --notoflx
» Starting felixcore with the internal software datagenerator (no card required):

$ felixcore -t 1 --data_generator --ttc_generator --notoflx

7.4.2 Tests with an FLX Card

* Starting felixcore with one processing thread and emulators enabled. Emulators are configured to
send data via PCle to the FELIX host software.

$ felixcore -t 1 --emu_to_host Oxff

E-link and emulator data configuration can be adjusted with the elinkconfig tool.

March 19, 2018 — 14:45 62

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

DRAFT

« Starting felixcore with one processing thread and emulators enabled. Emulators are configured to
send data via detector links to external receivers or via loopbacks back to the FLX card:

$ felixcore -t 1 --emu_from_host Oxff

E-link and emulator data configuration can be adjusted with the elinkconfig tool.
» Send a message to a running felixcore instance that will forwarded to E-link 15.

$ felix-dcs -H 192.168.15.1 -e 15 -m "hello world!"

Note: The tool felix-dcs is obsolete and will be discontinued in the future. The functionality will
be integrated in the new tool fatcat.

7.5 Connecting to a felixcore instance using NetIO tools

The felixcore application uses the NetlO publish/subscribe system to distribute data. The tool netio-cat
can be used to analyze published data. For example,

$ netio-cat subscribe --host 192.168.15.2 -t 15 -t 42 -e raw
will let netio-cat subscribe to E-links 15 and 42 of the felixcore application running on the host
192.168.15.2 with the default port 12345. The encoding is set to raw, which will simply write a

hexdump of each received message. For other formatting and subscription options, see netio-cat
-h.

7.6 Connecting to a felixcore instance using FATCAT

FATCAT is an advanced analysis and test client for FELIX and the successor of multiple ad-hoc tools like
felix-client and felix-dcs. The application is currently experimental. For help options see

$ fatcat -h

In the future fatcat can be used to debug data streams coming from FELIX, send data to detectors via
FELIX, record data to disk, manage data subscriptions among multiple FELIX hosts, benchmark FELIX
systems and analyze recorded data.

March 19, 2018 — 14:45 63

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

DRAFT

7.7 Discovering E-links with the FELIX BUS system

Clients that want to receive data from or send data to specific E-links need to know by which FELIX
instances the desired E-links are managed. The FELIX BUS system is used for this purpose. FELIX
instances broadcast at regular intervals information about connected E-links. Clients can retrieve this
information and build internal lookup tables using the library libfelixbus.

The E-Link IDs published by felixcore are global E-link IDs, i.e. they uniquely identify E-links across
all FELIX hosts. This requires that the FELIX ID (command line option -felix_id) is set to a unique
number for each felixcore instance. The default FELIX ID 0 is fine to use for tests where only a single

FELIX is running.

The tool felix-buslist can be used to display the tables:

$ felix-buslist -t

Tables in FelixBus (ctrl\ to quit)

FelixTable::print(): table.size()=4

Peerld

1950EDDFD4821AF225D99EBCE9B22152
1950EDDFD4821AF225D99EBCE9B22152
1950EDDFD4821AF225D99EBCE9B22152
1950EDDFD4821AF225D99EBCE9B22152

FelixID

0468680B8DID0388D8D1078B725D2E3B
238B9263BA79A05378652F433A25C949
4E418C3646578B46FD939AF6AC5FFB5B
C87FAE7D74FC1D99BFB454ACD74EBA23

ElinkTable::print(): table.size()=10

PeerId

1950EDDFD4821AF225D99EBCE9B22152
1950EDDFD4821AF225D99EBCE9B22152
1950EDDFD4821AF225D99EBCE9B22152
1950EDDFD4821AF225D99EBCE9B22152
1950EDDFD4821AF225D99EBCE9B22152
1950EDDFD4821AF225D99EBCE9B22152
1950EDDFD4821AF225D99EBCE9B22152
1950EDDFD4821AF225D99EBCE9B22152
1950EDDFD4821AF225D99EBCE9B22152
1950EDDFD4821AF225D99EBCE9B22152

The example shows that there is one felixcore instance running (peer ID 1950...) with four threads (FELIX
ID 0468..., 238B..., 4E41..., C87F...), each reachable on a separate TCP port. This felixcore instance

FelixId

238B9263BA79A05378652F433A25C949
C87FAE7D74FC1D99BFB454ACD74EBA23
4E418C3646578B46FD939AF6ACSFFB5B
0468680B8DIDO388D8D1078B725D2E3B
238B9263BA79A05378652F433A25C949
C87FAE7D74FC1D99BFB454ACD74EBA23
4E418C3646578B46FD939AF6ACS5FFB5B
0468680B8DIDO388D8D1078B725D2E3B
238B9263BA79A05378652F433A25C949
C87FAE7D74FC1D99BFB454ACD74EBA23

Address

tcp://10.193.16.62:12345
tcp://10.193.16.62:12348
tcp://10.193.16.62:12346
tcp://10.193.16.62:12347

ElinkId
3735579
3735580
3735591
3735618
3735676
3735701
3735729
3735732
3735739
3735741

handles 10 different E-Links which are distributed among the four worker threads.

7.8 Debugging

7.8.1 Using the FelixCore event tracing framework

FelixCore includes a trace framework that can be used to gain a better understanding about latencies added
by individual parts of a communication chain or to get detailed information about the dataflow of a single
message through the system. The trace framework operates by logging events with precision timestamps

to a file.

To enable the trace framework, start the felixcore application with the option --trace. FelixCore will

then timestamp events and record these events in a file "trace.csv" in the current working directory.

March 19, 2018 — 14:45

DRAFT

10es The contents of trace.csv will contain of lines similar to this:

1004 20605900, MSG_RECV, 0
1005 20606530, FROMHOST_BLOCK_WRITE_START,®
109 20606584, FROMHOST_BLOCK_WRITE_COMPLETE, ®

1z The CSV file contains three columns.

1098 1. The first column contains the timestamp of the event in microseconds.

1099 2. The second column contains the type of the event. Currently we have these events:

1100 TOHOST_BLOCK_READ Issued when a 1 kB block is read from the FLX card

1101 FROMHOST_BLOCK_WRITE_START Start of DMA transfer of blocks to the FLX card
1102 FROMHOST_BLOCK_WRITE_COMPLETE DMA transfer to the card completed

1103 MSG_RECV A message was received from the network for an E-link

1104 MSG_SEND A data chunk is published and is being sent to clients in the network

1108 3. The third column contains an E-Link id that associates an event with an E-link if applicable.

1os Note that the trace.csv file is *not sorted by timestamp*. If needed, the events in the file need to be sorted
107 in a post-processing step.

March 19, 2018 — 14:45 65

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

DRAFT

8 Resources for Front-End Developers

This section is aimed at collecting useful information for front-end developers to aid the design and im-
plementation of front-end firmware/hardware for interaction with FELIX. Useful tips based on experience
so far will also be presented, in a section that will grow over time as more feedback is received.

8.1 FELIX Firmware Modules for Front-end Users

The FELIX team have produced a number of self contained firmware modules which are intended for
integration into front-end firmware both for testing and production purposes. These will make it possible
to test data transfer functionality from the output layer of the front-end firmware to FELIX and beyond,
before integrating more of the front-end logic. These modules can be divided up between GBT and FULL
mode use cases.

8.1.1 Downloading Firmware Source
A full description (including diagrams) of the modules discussed below, as well as the relevant firmware
source, is available on the FELIX project distribution site:

https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/dist/
examples/

The site contains multiple revisions, for compatibility with different FELIX firmware versions. GBT-
compatible packages are labelled ’ElinkInterfaceSources’ and FULL mode-compatible packages are
labbeled *FullmodelnterfaceSources’. Please consult the documentation within the files for compatibility
information.

8.1.2 GBT Test Modules
From a GBT perspective the modules provided depend on whether the GBT implementation is in an
FPGA or with a GBTX chip. Common to both is a simple data generator module, which generates an

incrementing counter and can be attached to the input port of the GBT module to provide a basic data
source for link testing.

8.1.2.1 GBT-FPGA

For FPGA-based GBT a module will be provided to wrap and drive the GBT link in communication with
FELIX (in both directions). All modules will be fully compatible with the official GBT-FPGA core [16].

8.1.2.2 GBTx

For GBTx chips all that is needed is to connect the provided data generator to a chip e-port, thus providing
data on one E-link across the GBT.

March 19, 2018 — 14:45 66

https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/dist/examples/
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/dist/examples/
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/dist/examples/

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

DRAFT

8.1.3 FULL Mode Test Modules
8.1.3.1 Link Layer Tests

For FULL mode implementations the FELIX developers provide a link layer test package, making it
possible to verify functionality at transceiver level (e.g clock jitter stability, cleaning and configuration).
Users should be able to integrate this into their front-end design for basic tests before implementing higher
level link protocols.

8.1.3.2 Protocol Tests

Once the link layer is verified, users can integrate the ’stream controller’ module, also provided by the
FELIX developers, which manages the FULL mode link protocol and adds e.g. start and end of packet
markers. This is recommended for use not just in testing but also final implementation. Alongside this
module a simple data generator is also provided which can be used for testing data transfer across the
link.

8.2 General Hints and Tips
8.2.1 Known Technical Requirements for FELIX Communication

* E-link “chunks” or packets are even multiples of bytes or 8b/10b symbols. If an odd number of
bytes are received from the front end, FELIX will add an extra padding byte. In the to-front end
direction, the length must be an even number of bytes.

» Synchronization of 8b/10b encoding requires two consecutive comma characters.

8.2.2 Examples of Design Best Practice based on Current Experience

* For GBT-mode transmission to FELIX, use 8b/10b encoding on the E-links. Avoid the non-encoded
fixed length or variable length formats, because no resynchronization is possible if bits are lost or
repeated on the E-link. Comma symbols are used to align to /0-bit symbols in the bit stream. They
are considered idles and can be inserted in the data stream anywhere. Transmit “frequent” pairs
of commas. This will minimize data loss when FELIX tries to resynchronize when the symbol
boundary is lost due to a missed or repeated bit on the E-link.

Start-of-Packet (SOP) and End-of-Packet (EOP) symbols delineate packets, e.g. event boundaries.
This allows FELIX to easily resynchronize to event boundaries should synchronization be lost.

EOP is not strictly required. However, if not present, a long pause in the E-link data will cause the
packet just before the pause to wait in a FELIX buffer until the next SOP.

March 19, 2018 — 14:45 67

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

DRAFT

The E-link clock, input, and output data rates are independent. The only restriction is that within
a GBT E-link group all the clocks must have the same frequency, all the data inputs the same data
rate and all the outputs the same data rate. However groups can be setup independently from each
other. Read the GBTx manual carefully to understand the GBTx group restrictions and bit order.
Note, however, that a clock output is only available if its corresponding Tx is enabled. This means,
for example, that a bank running with 320 Mb/s E-links can supply only two clocks, but they can
be 40, 80, 160 or 320 MHz.

In 8b/10b encoded E-links, FELIX can be asked to assert BUSY by sending BUSY-ON and BUSY-
OFF symbols (i.e. out-of-band symbols that can be sent any time, even within data packets). This
should be done only in exceptional cases or at start of run. It should not be the normal mode of
protecting against buffer overflow. Instead, complex dead time should be defined to prevent most
buffer overflows.

The event data sent to FELIX are not expected to be ATLAS-standard event fragments. FELIX just
transports the data to the “Data Handler” (a.k.a. Software ROD) where detector specific software

may transform the data as required and format it into ATLAS-standard event fragments for the
ATLAS Read out system (ROS).

In addition to sending all events to the Data Handler, FELIX can send all, or a sample of, events to
other network end points for monitoring. Extra monitoring data may be included as packets separate
from event data packets in the E-link data stream by using FELIX’s stream IDs at the start of the
packet.

DCS information may be included as packets separate from event data packets in an E-link data
stream by using FELIX’s stream IDs at the start of the packet.

Any 80Mb/s E-link can be used to connect to a GBT-SCA ASIC. The E-link clock must be
configured to use 40 MHz, i.e. the data is sent in DDR mode.

The “EC” link can be used as an ordinary E-link at 80 Mb/s; its E-link clock may be either 40 or
80 MHz.

Fiber connections: to be added
Broadcasts to the front end: fo be added

TTC: FELIX can send TTC Level-1 Accept information on any E-link declared as a “TTC” E-link.
“TTC” E-links can be 80, 160 or 320 Mb/s E-links, to transfer 2, 4 or 8 TTC bits on every BC clock.
The contents of the TTC word is defined by the FELIX configuration and can be chosen from the
ten bits in Table 5. Note: In all three cases, the E-link clock can be 40 MHz, i.e. BC clock The data
is sent with FIXED latency.

Table 4: Possible TTC bits that can be sent on an E-link defined as a TTC E-link.

Table 5: Below is the list of bits decoded from the TTC system that can be chosen to be sent on an E-link defined as
a TTC E-link.

Brest[7] Brest[6] Brest[5] Brest[4] Brest[3] Brestf2] ECR BCR B-chan LI1A

March 19, 2018 — 14:45 68

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

DRAFT

8.2.3

“Brest[i]” are the eight TTC broadcast bits sent on the TTC “B-channel” which the user controls via
the TTCvi VME module. Sending the raw B-channel is also an option, sent one bit per BC clock.
More options can be requested to suit the needs of specific detectors. Note that currently, the chosen
bits are refreshed every bunch crossing by those sent on the fiber from the TTCvi module. This is
unlike the legacy TTCrx ASIC where, for some bits (not BCR or ECR), sending the coresponding
bit from the TTCvi toggled the current state of the coresponding TTCrx ouput bit. In future, FELIX
will support both modes of opeation.

As an example, the NSW uses the broadcast bits to send an 8-bit TTC word with the following bits:
L1A, LOA, BCR, ECR, ECOR, test_pulse, soft_rst, SCA_rst

Frequently Asked Questions

Is GBT wide mode supported?
Yes.

Is GBT 8b/10b mode supported?
No.

Is the phase of the eight “utility” clocks fixed with respect to the E-link clocks?
Yes, there is a fixed relationship with the E-Link clocks.
Note that the eight utility clocks have worse jitter than the E-link clocks.

Can the GBT output a 40 MHz E-link clock, use that clock in 40 MHz DDR mode for the to-frontend
link, but accept data on the uplink at 160 or 320 Mb/s? (Assuming the FE ASIC multiplies the
40 MHz to 80, 160 or 320 MHz.)

Yes, that is possible. Also the to-frontend link can receive at 80, 160 or 320 Mb/s.

Is there a maximum packet length on the E-link in 8b/10b mode?
No.

March 19, 2018 — 14:45 69

DRAFT

. Appendices

March 19, 2018 — 14:45

70

DRAFT

A Setting up a TTC System for use with FELIX

This section is meant to help users of FELIX systems with the set-up of a TTC system. It is a work in
progress, maintained by Markus Joos (CERN). Figure 70 shows the final cabling of TTCvi and TTCvx
modules for a TTC setup with B-channel. The A-channel carries the Level-1 Accept; the B-channel carries
BCR and the other TTC commands. The TTCvi-TTCvx pair should have already been tuned. If not, see
Section A.1 below. Note: For a TTCex this may look different. A list of all the materials you will require
to set up a TTC system is presented in Table 6.

Figure 70: Image of cabled TTC system with B-channel connections

March 19, 2018 — 14:45 71

DRAFT

Table 6: Materials needed to set up a TTC system

Item Source Remarks

VMEDbus crate Can be rented from the CERN Other crates may do as well
Electronics Pool

VMEDbus master We recommend a SBC from

Concurrent Technologies (AT-
LAS standard). Support can be
given for VP717, VP917 and
VP-E24

TTCvi VMEbus card

Can be rented from the CERN
Electronics Pool (but the Pool
may be out of stock)

The TTCvi is no longer in pro-
duction.

Make sure the VME base ad-
dress switches are set to match
your software.

TTCvx VMEDbus card or TTCex
VMEDbus card

TTCvx and TTCex can be rented
from the CERN Electronics Pool
(but the Pool may be out of stock)

The TTCvx/ex is no longer in
production. The TTCvx has a
LED driver, the TTCex has a
laser driver

3 LEMO cables (1 or 0.5ns)

1 optical multi-mode (TTCvx)
or single-mode (TTCex) fiber
with ST connectors on both ends

Max length of the fibre:
TTCvx: 20m; TTCex: 100 m

TTCoc

ATLAS (not clear who to ask;
Maybe P. Farthouat)

TTC fan-out; needed if you have
several FELIX

optical attenuator

Are these available somewhere?

Needed only for use with a
TTCex without TTCoc.

The optical attenuator has to be
a single-mode attenuator of 3-
20dB and has to be connected
directly to the TTCex output.
The FTPDA-R155 should work
with a TTCvx without attenua-
tor. In case of a TTCex an atten-
uator of 3dB is recommended
for the FTPDA-R155.

The FTPDA-R155 has a sensi-
tivity of -31 dBm and saturates
at +1 dBm.

If you need to tune the TTCvi-TTCvx pair, you need in addition:

2 LEMO cables (5-10ns)
2 LEMO Y-adapters
2 LEMO-BNC adapters

2 50 Ohm terminators (Only required if your oscilloscope has no internal termination.)

March 19, 2018 — 14:45

72

DRAFT

A.1 Tuning a TTC system

If your TTCvi-TTCvx pair has not been tuned, follow the instructions in this section. Cable the TTC system
as shown in Figure 71. Note: for a TTCex this may look different. For more information please consult the
section “Tuning procedure 2” of the TTCvi manual (http://www.cern.ch/TTC/TTCviSpec.pdf).

Ignore this module

= To oscilloscope

Figure 71: Image of cabling for tuning a TTC system

Note: The question has come up if channel A and channel B are correctly cabled in the picture above.
Here is a reply from the TTC expert (Sophie Baron):

A “good” configuration when channel B is not used is indeed to have it tied to “1”. And
it is right that having Channel B connected to OUTPUT B gives a static “1” on channel B.
However, the termination scheme at the TTCex inputs keeps as well unconnected channel
inputs (both B and A) to “1” by default (it is negative ECL logic, and the Vin is at -2.08V
by default). Therefore, both schemes could be used identically. One additional remark: of
course, if you leave both A and B unconnected at the input of the TTCex, you will have
both channels A and B to “1”, and this is not good as the TTCrx needs to see two different
behaviours on A and B to be able to differentiate them (the rule is that the A-channel must
not have more than 11 consecutive “1” whereas B can have any type of sequence).

March 19, 2018 — 14:45 73

http://www.cern.ch/TTC/TTCviSpec.pdf

DRAFT

23 This description can be broken down into the following points:

2 1. Connect the TTCvi A/ecl CHANNEL OUT output to the TTCvx A/ecl CHANNEL IN input via
25 a Y-adapter.

2% 2. Connect, via a Y-adapter, one of the TTCvx CLOCK OUT/ecl outputs to the TTCvi CLOCK IN
bc/ecl input. Check that the BC_EXT indicator is lit on the TTCvi as shown below. The TTCvx
internal clock may be used.

BC delay set to
position 5

LEDs:
BC-EXT and A-
CH on

27 3. Set the TTCvi trigger mode (=5) to random at the highest rate (100kHz) and disable the

2 event/orbit/trigger-type transfers. In order to do this write 0x7005 to the D16 VMEbus CSR1
29 register at offset 0x80. This can be done easily for vme_rcc_test. Note: The A24 base address of
30 the TTCvi in the CERN reference system in TBED is 0x555500. This should light up the TTCvi
3t A-Ch yellow indicator and the A/ecl CHANNEL OUT output should now carry 25 ns long trigger
32 pulses.

March 19, 2018 — 14:45 74

33

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

DRAFT

4. With an oscilloscope look at the TTCvx Channel-A input in respect to the clock output, as shown
below.

Tek g Trig’d M Pas: 30.40ns CH?
+

H2 200mY M 10.0ns
4-Apr-16 14:45

CHI (vellow): Channel in
CH?2 (blue): Clock out

5. Adjust the TTCvi BC delay switch such that the rising edges of the Channel-A pulses occur within
4 ns before to 2 ns after the rising edges of the clock signal.

6. Setting the delay switch in position 2 and using 1 ns long interconnecting cables for the clock and
the A and B channels corresponds to the above mentioned timing criteria. Note of MJ: Even though
I used 1ns cables, I had to set the switch to position5 (see picture above) in order to meet the
requirement of step 5.

A.2 Guide to TTC Channel B

The following section describes the structure of the TTC ’B channel’ data stream, and how it may be
decoded and operated by users. The information in this section is provided courtesy of Alessandra
Camplani and the LAr group.

The data stream arriving through TTC B channel can be of two types: short broadcast commands or long
individually-addressed commands/data.

Short broadcast commands are used to deliver messages to all TTC destinations in the system, while long
individually-addressed commands/data are used to transmit user-defined data and instructions over the
network to specific addresses and sub-addresses. These two types of command have different dedicated
frame formats, as shown in Figure 72:

The difference between the two command types can be illustrated with the example below. When not in
use the B channel IDLE state is set to 1. When a sequence of commands is sent, the data transmission
state changes from 1 to 0. After the first zero received it is possible to distinguish between short broadcast
and long address commands: if the second bit in the stream is a O then the command is a short broadcast,
if it is a 1 then the command is of long address type.

March 19, 2018 — 14:45 75

58

59

60

61

62

64

65

66

67

68

69

70

7

72

73

74

75

76

77

78

79

80

81

82

83

84

DRAFT

; IDLE START‘ FMT \ DATA |CHCK‘ STOP

BROADCAST COMMANDS/DATA
[0[0] 8b CMD/DATA [5b CHCK |[1]

INDIVIDUALLY-ADDRESSED COMMANDS/DATA

|o\1\ 14b TTCrx ADDR |E\1\ 8bSUBADDR| 8b DATA | 7b CHCK \1\

Figure 72: Frame formats for the B channel commands.

IDLE=111111111111
Short Broadcast, 15 bits:
OOTTDDDDEBHHHHH :
T= test command, 2 bits
D= Command/Data, 4 bits
E= Event Counter Reset, 1 bit
B= Bunch Counter Reset, 1 bit
H= Hamming Code, 5 bits
Long Addressed, 41 bits
01AAAAAAAAAAAAAAE1SSSSSSSSDDDDDDDDHHHHHHH :

A= TTCrx address, 14 bits

E= internal(0)/External(l), 1 bit
S= SubAddress, 8 bits

D= Data, 8 bits

H= Hamming Code, 7 bits

The short broadcast command type is used to send two important values: the Bunch Counter Reset (BCR)
and the Event Counter Reset (ECR).

The BCR is used to reset the bunch crossing counter, which is increased every clock cycle on the 40
MHz clock. This is a 12-bit counter, also called BCID. A BCR command is sent roughly every 89 us,
corresponding to the time that a bunch needs to do an entire circuit of the LHC. During this time the BCID
counter reach its maximum value, 3564 counts.

The ECR is used to increase the event reset counter. The periodicity of this reset is decided by each
experiment, with ATLAS having it set to 5seconds. The event reset counter combined with the L1A
counter gives the Extended L1ID (EVID). This is a 32-bit value consisting the L1A counter in the lower
24 bits, and the event reset counter in the upper 8. Every time that an ECR is received the upper counter
is increased by 1 and the lower part is reset to zero. Every time that a L1A is received the lower part is
increased by 1.

BCID and EVID values are used as a label for the data accepted by the trigger.

The long address command type is used to transport another important value: the Trigger Type (TType).
Each L1A transmission is followed, with variable latency, by an 8-bit TType word. This word is generated

March 19, 2018 — 14:45 76

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

104

105

106

107

109

110

111

112

113

114

DRAFT

inside the LVL1 Central Trigger Processor (CTP) and distributed from the CTP to the TTCvi modules for
each of the TTC zones in the experiment via the corresponding LTP modules.

The presence of a Trigger Type within long address commands is announced by a sub-address (8 bits) set
to 0.

Sub-Trigger physics ALFA FTK LArdemonstrator Muons Calorimeter ZeroBias Random
Bit 7 6 5 4 3 2 1 0

Table 7: Trigger type 8-bit word: Each bit represent the sub-detector which fired the trigger or the data type.

As shown in Table 7, each bit has a specific role. In calibration mode, bits O to 2 can be used to distinguish
between up to eight different possible types of calibration trigger within each sub-detector. Bits 3 to 6 are
used to indicate which sub-detector or subsystem fired the trigger. Bit 7 represents physics trigger-mode
when set to 1, and calibration mode when set to 0.

A.2.1 B channel decoding firmware

An effort is under way to provide a centrally maintained firmware module to decode TTC B-channel
data. In the short term, users are advised to refer to a version produced for LAr front-ends by Alessandra
Camplani. The module code can be found in gitlab:

https://gitlab.cern.ch/atlas-lar-1dpb-firmware/LATOME-ttc

The code itself is in the folder code_ttc and the files dedicated to TType decoding are: Bchan_top.vhd,
SMdecoding_cnt.vhd and TType_decoding. The simulations for this specific part can be found in the
simulation folder. Here there is a testbench for the Bchan_top entity and another one for 7T ype_decoding
entity.

Development of this module is ongoing, with the /atome_ttc branch being actively maintained and kept
up-to-date.

A.2.2 Channel B decoding software

In order to test channel decoding, it is recommended that users employ the menuRCDTtcvi application,
provided as part of the ATLAS TDAQ software release. Within the application select ’'BGO menu’ and
then option 13 ’send asynchronous command’. From here it should be possible to select either a short
of long command. In the case of a short command simply enter the data word to be sent. For a long
command enter an address O (for broadcast), O for internal registers, subaddress O for trigger type, and the
data word to be sent.

A.3 Useful documents

You may find additional useful information in this document from the ATLAS LAr group:

https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/community/
CPPM_MiniFELIX_tests_results_and_TTC_system_experience.pdf

March 19, 2018 — 14:45 77

https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/community/CPPM_MiniFELIX_tests_results_and_TTC_system_experience.pdf
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/community/CPPM_MiniFELIX_tests_results_and_TTC_system_experience.pdf
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/community/CPPM_MiniFELIX_tests_results_and_TTC_system_experience.pdf

DRAFT

+ B BNL-711 Technical Information

1e This appendix will collect technical information for the BNL-711 board which may be relevant to user
117 test stand installations.

SO-DIMM Sockets

JTAG Connector
(Not used for FELIX)

MiniPOD Sockets (x8)

(TTC)
(Not fitted in <]
diagram) .
12 V Power
(Not compatible
LEMO | with Xilinx Power
Connector Connector)

m Kintex UltraScale XCKU115 FPGA
PCle x16 Gen 3

Figure 73: The BNL-711 V1.5 board.

e B.1 User Jumper Map and Functional Specification

1ne The BNL-711 provides a number of I/O connectivity options. These are selectable by modifying the
120 position of the user jumpers shown by the red boxes in Figure 73. A specific map of the relative position
121 and name of each jumper is presented in Figure 74. A detailed description of the function of each jumper,
122 and to which board configuration options it relates, is available in the sections below.

112
J |3 |4
5|6
JMPR2| 1 | 2 | 3
JMP2 | 2 | 1 JMP1 112
JMPR1| 1 | 2|3
3|1 J2 JMP3
PR 321 2 |1

Figure 74: BNL-711 V1.5 User Jumper Map

March 19, 2018 — 14:45 78

DRAFT

s B.1.1 J1

12« For uC configuration with 6-pin ISP programmer.

1 MISO
2 | VTG-SYS25
3 SCK
125
4 MOSI
5 RSTn
6 GND
126 B.1.2 J2

12z PRSNT selection.

1 | PRSNT_FPGA
128 | 2 PRSNT
3 PRSNT1

120 2&3 are connected.

10 B.1.3 J8

131 Backup I2C/SMB connector.

1 SYS33

2 | PCIE_SCL
3 GND

4 | PCIE_SDA

132

13 B.1.4 JMP1

13a Connect FPGA_PROG_B to the uC_FPGA_PROG_B (PC5). Connected by default.

1 | uC_FPGA_PROG_B
2 FPGA_PROG_B

135

March 19, 2018 — 14:45

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

DRAFT

B.2 JMP2

Connect FPGA_INIT_B to the uC_FPGA_INIT_B (PD2). Connected by default.

1 | uC_FPGA_INIT_B
2 FPGA_INIT_B

B.2.1 JMP3

WAKE_N from PCle to FPGA. NOT connected by default.

PCIE_WAKE_N
2 | PCIE_WAKE_N_FPGA

B.2.2 JMPR1 & JMPR2

JMPR1: FLASH_A25 selection.

1 GND
2 | uc_FLASH_A25
3 SYS25

JMPR2: FLASH_A26 selection.

1 GND
2 | uc_FLASH_A26
3 SYS25

The FPGA firmware has the highest priority to set FLASH_A25 and FLASH_A26. The Jumpers have
lowest priority.

If uC is used, when uC_FLASH_A is ’1°, the FLASH_A will be ’0’; when uC_FLASH_A is ’0’, the
FLASH_A will be ’1°.

If Jumpers are used, when it is connected ’1°, the FLASH_A will be ’0’; when it is connected ’0’, the
FLASH_A will be ’1°.

As default, the first Flash partition can be used, then 2&3 are connected.

March 19, 2018 — 14:45 80

154

155

157

B.3 MiniPOD Connectivity Map

The BNL-711 hosts 4 MiniPOD Tx/Rx Transceiver pairs, located in two banks either side of the FPGA,
as shown in Figure 73. The transceiver sockets have a specific logical order, presented in Figure 75. Users
should connect their optics according to this map to ensure the correct link order is preserved.

824 Rx

814 Tx

824 Rx
Pair 4

814 Tx

824 Rx
Pair 3

814 Tx

824 Rx

Figure 75: BNL-711 MiniPOD Connectivity Map.

March 19, 2018 — 14:45

814 Tx

J \

— Pair 2

— Pair 1

81

159

160

161

162

163

164

165

166

167

DRAFT

C Guide to FELIX Data Structures

* Data buffered in the FPGA per E-link or per FULL mode link and transferred under DMA control
* Fixed block size of 1 kB

* The blocks are transferred into a contiguous area, functioning as a

» circular buffer, in the main memory of the PC.

* The DMA runs continuously, thereby eliminating DM A setup overheads and achieving high through-
put (about 12 GB/s for the 16-lane interface of the FLX-711).

* Event fragments or other types of data arriving via the FE links are referred to as “chunks” and can
have an arbitrary size.

* 1 kB blocks of E-links or FULL mode links are multiplexed into a single stream.

= Block header: (32 bits) = Fragment trailer (16 bits)

= E-link ID = Fragment type
= Block sequence = First, last, both, middle, null

= Start of block symbol = Flags
= Error, truncation, timeout, CRC error
= Fragment length

= 10 bits
1 kB block 1 kB block 1 kB block 1 kB block
I chunk T chunk chunkI E-link packet = chunk (may span multiple blocks) L

Figure 76: FELIX block structure

March 19, 2018 — 14:45 82

DRAFT

From FPGA to PC
Block header

Block header as u_long (32-bit word) read from memory
Data is transferred [31]0 202827 [as[2s]2a[23]22]2n[20]10][18[7[16[1s[1a[3[2[n]wo][o[s]7[6][s]a][3]2]1]o0]
as 1 kByte blocks | Oxab | Oxcd | Sequence number GBT | Egroup | Epath |

with this block header
Block header as u_char (bytes) read from memory
[7lelsTafsafaJo] [TelsTafaTalafo] [7]ef[s[efa]2Tso] [z]elsTels]2a]0]
|GBTdow| E-group | E-path | | Sequencenumber | GBT-high | | Oxcd | Oxab

Block header as u_int_16_t (u_short) (16-bit words) read from memory
[s]we[s]oe]ufw][s]s[7]s][s[a]3[2]1]o] [s]u[nB][e]u[w]s][s[7]s][s[a]3]2]1]0]
|__sequence number GBT | Egroup | Epath | Oxab Oxcd

Sub-chunk trailer

1 E-group, 18 bits

Sub-chunk trailer read as u_int_16_t (u_short) (16-bit word) from memory 16:16 816 416 216

Payloads of the blocks

are organized as chunks Type T [E | C [sub-chunk length in bytes | on a 16-bit boundary,] [] [] M“"’
that may extend over 0| ©O| Of<-signals fill pattern caused by timeout, all other bits are also 0 if the number of bytes is odd, 4 . FrD J-{PATHE
several blocks. Each 0| O 1|<-first part of chunk consisting of more than one part a padding byte is added | bl
chunk has a 16-bit trailer, 0| 1| O|<-last part of chunk consisting of more than one part at the end 3 — o . PATHS
if it extends over more 0| 1| 1|<-chunk consisting of one part v
than one block then 1| 0| O|<-not first and not last part of chunk consisting of more than one part | bee L os [o . PATHA
each part of the chunk 1| 0| 1|<-E-link timeout 1%
("sub-chunks") has 1| 1| 0|<-reserved 1 M [. PATHS
its own 16-bit trailer 1] 1] 1|<-outof band
N . Pz
T: Truncation flag, 1 if chunk was truncated
E: Error flag, 1 if an error occurred o
C: CRC20 Error (FULL mode) Reserved in GBT mode umm
L_hoo Ldom pal__m

Out of band trailers (implemented in Full mode only)
Out of band trailers start 11 1 0 0 0 O O O 1 O 1 1 1 0 O Indicates that the frontend is in busy state for the given Full mode link 0XEO5C
width "111", but the other
fields are defined here,
the fields T, E, C and
length are undefined.

Default emulator chunk payload
Internal chunk header as u_char (bytes) read from memory

byte 0 byte 1 b byte 2 byte 3
Internalheaderofchunk [7 [6 [s [a[3[2[1o [7[e[s[a[3]2]2Jo] [7]e[s[a[3]2]2Jo] [z]e[s[a]zs]z2]1]0]
payload as loaded in | Oxaa | 0 length msh | | length Isb | L1ID msh
emulator memory in .bit msb: most significant bits
files. This payload can be byte 4 byte 5 byte byte 7 Ish: least significant bits
replaced by the [7Te[sTals[2]2Jo] [7[e[s[als[2]2Jo] [7[e[s]a[3]2]2Jo] [7]e]s[af[3]2]1]o
elinkconfig program | L1ID Isb | Oxbb | Oxaa | E-link width

TTC: L1Ainfo

Words read as u_long (32-bit word) read from memory
Proposal for TTC [7TelsTals]z2]2Jo[7]e[s[a]s[2[1Jo[7[6[sa[3]2]21Jo]7[e[s]af[3]2]2]0]
information ("L1AInfo") | FMT I length (20) I reserved | BCID |
output via dedicated
Edinkaschunkpayload, [7 [6 [s[a[3[2] 1Jo[7[e[s[a[s3]2]1Jo[7][e[s[af[s[2]2fof[7]e6][s[a]s][z2]1]0]

Phase-ll i [ded L1ID [L1ID |
FMT=0x1 for format shown
[FTelsTeTsTaTsol7]e]sTef3T2[:of7]elsTe]sT2]x 7felsTefs]2]]o]
| orbit |

o

7[elsTelsTalefof7]e]sTefaT2[sJo7]elsTefs2]sJofs]e]s]els21]0]
trigger type | reserved |

7[elsTelsTalefof7]e]sTefaT2[sJof7]esTefs2]sJofs]e]s]els21]0]

LoID |

Words read as u_long (32-bit word) read from memory

Proposal for TTC [7TelsTals]2]aJo[7]e[s[e[s]2[1Jol7[e6[sa[3]2]1Jo]7[e[s]af[3]2]1]0]

information for testing, | FMT | length (8) | reserved | BCID |

emulated using

emulator memory [FTelsTals]2]aJo[7]e[s[e[s]2[1Jol7[e[sa[3]2]1Jo]7[e[s]af[3]2]2]0]
| L1ID | L1ID |
L1ID typically about 0 .. 25

From PC to FPGA

Data is transferred [sTw[ns]e[ufw][e[s[7]6[s[a]3][2]1]0]

as 32 byte | GBT | EGroup [E-path | length [eom|

messages with a 2-byte

header and a 30-byte eom: 1 if last part of message

payload length: count of 2 byte words

Figure 77: List of FELIX Data Structures

March 19, 2018 — 14:45

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

DRAFT

D Guide to Using FELIX with GBT-SCA

This appendix is included with thanks to Paris Moschovakos and the DCS team.

D.1 Introduction

The Slow Control Adapter (GBT-SCA)ASIC is part of the GBT chip-set and it is dedicated for the slow
control of the front-end boards. It features several sub-devices that facilitate both Frornt end configuration
and monitoring environmental variables (voltages, temperatures, etc.) on and around the detector. The
sub-devices are ADCs, DACs, general purpose IO, and controllers for I2C, SPI and JTAG. An SCA is
connected to a GBTx via any 2-bit E-link. The E-link must be operated in 40 MHz DDR mode (80 Mb/s)
with HDLC encoding. Up to 41 SCAs can be potentially connected to a single GBTx when FELIX is
configured accordingly.

From/To FELIX
I E-links on GBT-frame
H IC EC EC FEC
GBTx Control Path Data Path - ,
Abits 2bits Zhits B0bits 32bits

up to 40

40MHz DOR
20 Mbps

SCA

SCA

Figure 78: GBT frame paths and e-links

D.2 Typical test setup
A typical test setup consists of a board that houses a GBTx that is connected to FELIX via an optical fibre
and to a GBT-SCA ASIC via an e-link.

A Versatile Link Demo Board (VLDB) (https://espace.cern.ch/GBT-Project/VLDB/default.
aspx) was designed that can be directly plugged into a FELIX board and hosts both a GBTx and an SCA.
(The VLDB demo board can be procured from the GBT group.) Such a setup is shown in Figure 79.

To simplify the evaluation of the setup, the VLDB possesses two LEDs which are connected to two general
purpose outputs of the SCA. This can be used to validate the functionality all the way from the FELIX

March 19, 2018 — 14:45 84

https://espace.cern.ch/GBT-Project/VLDB/default.aspx
https://espace.cern.ch/GBT-Project/VLDB/default.aspx
https://espace.cern.ch/GBT-Project/VLDB/default.aspx

186

187

188

189

190

191

192

194

195

196

197

198

199

200

201

202

203

204

205

206

DRAFT

FELIX host

((
optical fibre
ﬁ PCle N
| E - VIRTEX -7

Figure 79: Evaluation setup with an SCA on VLDB. SCA and GBTx are interconnected externally in VLDB via
mini-HDMI connectors J32 (PRIMARY) and J33 (SCA PORT)

host to the SCA itself. In order to do that, the “fec” tool, of the ftools family as mentioned in Section 6.6.3,
can be used.

The following line requests from the SCA at <gbt_link_number> where the VLDB is connected, to blink
its LED 100 times.

$ fec -G <gbt_link_number> -r 160 -x 18 o

D.3 Operation to set up an SCA e-link

A configuration procedure is needed both for FELIX and the GBTx itself. The configuration is mostly a
description of the setup at hand and the mapping of the e-links that are connected. There are also some
setup specific parameters to be configured.

In the case where the SCA is connected to the dedicated EC e-link, one should just check that it is enabled
via the elinkconfig GUI. That specific e-link is pre-configured with the appropriate HDLC SCA encoding
and corresponding bit endianness and can be used directly for any SCA.

In the special case that one wants to use one of the data path e-links, one should configure FELIX via
elinkconfig accordingly. SCA uses HDLC encoding instead of the typical 8b/10b which is the standard
for the data e-links as can be seen in Figure 81. Moreover, the bit orientation is different than the other
data e-links. By selecting the HDLC format in the drop-down menu, elinkconfig takes care both for the
orientation and the encoding, indicating that an SCA is connected to that specific GBT group and path.

D.4 Low level operations with fec tools to configure and establish basic communication
The fec tool, as described in Section 6.6.3, is the dedicated “ftool” to use for the SCA EC e-link handling.

A number of operations to the various SCA interfaces is possible using its arguments. Depending on your
setup please check the full list of possible operations at Figure 57.

March 19, 2018 — 14:45 85

207

208

209

210

211

212

213

214

215

216

217

218

DRAFT

FLX-card: |0(709) ~ | ReadCfg TH_FO... FH_FO... Timeout... Clock...
File: Open... Save...
GBT Link |0 |5 ® Normal Wide FULL | Replicate.. Repl 2 All Generate/Upload...
Max Chunk 2-bit: |0 2| 4-bit: 0 % 8-bit: 0 | 16-bit: | 0 - @
Enable: 8x08408080 Mode: 8x21111111 #Bits: 0+0+0+0+0+0+0+2 Enable: 8x4000 Mode: 8x21111111 #Bits: 8+0+0+0+0+0+0+2
vi2 Egroup 0 v 2 Egroup 0
—4—> HDLC ~ —TP HDLC ~
EC/EPATH:7 Eoqoungl £c/epathz7 || E9rOUP !
2 Egroup 2 2 Egroup 2
EPATH: 6 group EPATH: 6 group
EPATH: 6 Egroup 3 8 EPATH: 6 Egroup 3
2 Egroup 4 2 Egroup 4
EPATH: 5 9 P EPATH: 5 g P
4 4
EPATH: 5 S EC]
2 2
EPATH: 4 EPATH: 4
16 16
EPRTH: O ; EC/TTC EPATH: 4
2 2
EPATH: 3 EPATH: 3
4 4
TTC/EPATH:3 EPATH: 3
2 2
EPATH: 2 EPATH: 2
8 8
EPATH: 2 EPATH: 2
2 2
EPATH: 1 EPATH: 1
& EPATH: 1 Repl 2 All 4 EPATH: 1 Repl 2 All
2 i 2 i
EPATH: 0 Replicate.. EPATH: 0 Replicate..
EPATH: O . EPATH: O .
Disable Disable
To-Host/From-GBT From-Host/To-GBT
FELI X vzs55 13-jun-2017 (tag: elinkconfig-02-05-02-dirty) Quit

Figure 80: SCA EC e-link

D.5 The integrated production system — Introduction

The on-detector DCS system that handles the slow control traffic and the configuration of the front-end
electronics, based on the GBT-SCA, is part of FELIX ecosystem and closely integrated into it. A proposed
solution is presented on the following scheme. The slow control and configuration traffic, unlike physics
data, has different requirements in terms of throughput, latency, availability and reliability.

FELIX DCS is the software that handles the SCA traffic arriving at FELIX card. Towards the FELIX
clients it is based on the middleware Open Platform Communications Unified Architecture (OPC UA,
of the OPC foundation, (https://opcfoundation.org/) which is an industry standard for secure and
reliable exchange of data in industrial automation and other controls-related areas.

The server/client architecture that the platform uses, allows for different purpose clients to be served by
a single server per FELIX host. The data flow to/from the ATLAS control room, not only serves the
control and monitoring data of the detectors’ conditions but also implements the configuration path of the

March 19, 2018 — 14:45 86

https://opcfoundation.org/

219

220

221

222

223

224

225

226

DRAFT

FLX-card: 0(709) ~ Read Cfg TH_FO... FH_FO... Timeout... Clock...
File: Open... Save...
GBT Link |0 || ‘® Normal Wide FULL | Replicate.. Repl 2 All Generate/Upload...
Max Chunk 2-bit: |0 2| 4-bit: |0 % 8-bit: 0 2| 16-bit: |0 -
Enable: 8x860c Mode: 8x11112111 #Bits: 4+0+2+2+0+8+0+0 Enable: 8x860c Mode: 8x11112111 #Bits: 4+0+2+2+0+8+0+6
Egroup 0 Egroup 0
EPATH: 7 Egroupjl EPATH: 7 Eojoung.
Egroup 2 Egroup 2
EPATH: 6 group EPATH: 6 group
v! 8 (05) - Egroup 3 v/ 8 (05) EhaTH. & Egroup 3
8b10b ~ 8bl0b ~
E 4 Ei 4
EPATH: 5 group EPATH: 5 group
EPATH: 5 EPATH: 5 EC
EPATH: 4 EPATH: 4
16 (03) 16 (03)
. EC/TTC EPATH: 4
direct
8b10b v 2(03)
EPATH: 3 EPATH: 3 ‘
4(02) o Zios 7| HOLC ~
EPATH: 3 EPATH: 3
v 2(02) v 2(02)
EPATH: 2 EPATH: 2
8bl0b ~ -
8 (01) 8 (01) 8bl0b
EPATH: 2 EPATH: 2
EPATH: 1 EPATH: 1
v/ 4 (00) EPATH: 1 Repl 2 All v/4(00) EPATH: 1 Repl 2 All
|8b10b ~ | |8blob ~ |
EPATH: 0 Replicate.. EPATH: 0 Replicate..
EPATH: O Disable EPATH: O Disable
To-Host/From-GBT From-Host/To-GBT
FELI X v255 13-Jun-2017 (tag: elinkconfig-02-05-02-dirty) Quit

Figure 81: SCA HDLC encoding

on-detectors electronics and their initialization for data taking or calibration. In addition, system experts
can monitor the status of the employed technology and get statistics and other information in order to
diagnose the various system layers.

All those requirements potentially imply many different OPC UA clients that would like to receive SCA
data from the setup at the same time. The chosen OPC UA architecture will ensure the reliable and
seamless data delivery and the compatible integration into the current DCS systems. This means that OPC
clients in both DCS and a detector configuration server can communicate with the same SCA ASIC and
the OPC server will correctly arbitrate their access.

March 19, 2018 — 14:45 87

GBT ASICs

On-Detector

Figure 82: OPC UA for GBT-SCA Architecture

73
DCSOPCUA _ , §8
client =3 9

Configuration
OPC UA client

; Diagnostic
“-» OPC UA client

22z D.6 The SCA software (SCA-SW), its demonstrators and the OPC-UA SCA Server

228

229

230

231

D.6.1 SCA-SW library

Stand-alone

--_:A----q

programs OsifmﬁrA
(demonstrators ...)
ADC|DAC GPIO | SPI JTAG| ...

A

SCA Synchronous Service

\J

SCA SW

HDLC Payload

... HDLC Backend ...

... backend specific dependencies ...

Figure 83: SCA-SW Library

A software library called SCA-SW has been designed and implemented. Its purpose is to provide software
support for the SCA chip by providing a high-level programming interface (for example, a function that
invokes an SCA ADC conversion and returns the converted voltage as a float number).

March 19, 2018 — 14:45

88

2

@

2

233

234

285

236

237

238

239

240

241

242

243

244

245

246

247

248

249

DRAFT

The following key decisions have accompanied the design process:

The library should be a modular piece of software supporting SCA chip(s) no matter how it
is physically connected to the host system. Therefore the core part of the library operates on
protocol data units of the SCA chip (here picture to SCA frame format), which normally would be
encapsulated in the HDLC protocol. There are a number of predefined “HDLC backends” which
are services to send such encapsulated SCA requests and receive replies.

The library should scale from the simplest use cases up to scenarios of thousands of SCAs.

The library should be able to profit from concurrency features of the host system, including mutli-
core and multi-threaded operation.

The library should be written in a chosen version of the standard C++ dialect.

The library should be designed with reliability and robustness as a key design choice because it
would serve critical, 24/7 communication.

The out-of-the-box SCA-SW, as of October 2017, includes among its backends the NetlO backend which
enables seamless communication with the FELIX software ecosystem, and particularly with the felixcore
application which can route the traffic between an application based on SCA-SW and any SCA connected
through fibers to chosen FELIX machine.

Being backend-agnostic, the addressing scheme shown in Table 8 has been chosen for the library to identify
a given SCA in case of NetlO.

Table 8: Addressing scheme

Backend
type

Discovery variant | SCA address to use

NetlO

simple-NetlO://direct/hostname/port1/port2/elink
Where:

traffic

further through fibers to the SCA. Typically it is 12340.
FELIX mapper

of the SCA chip. Typically it is 12345.

4. E-link is a two-digit hexadecimal E-link identifier. For example,

illegal to put 0x3f instead of 3F).

FELIX mapper

used

To be defined later

March 19, 2018 — 14:45 89

1. Hostname is a hostname of the FELIX machine handling given

2. Portl is the TCP/IP port on which FELIX will receive and transport

not used 3. Port2 is the TCP/IP port on which FELIX will distribute the replies

3F would mean the EC link of the first fibre of the FLX card. You
can use “felink” tool to compute the E-link identifier. Note that
neither decimal format nor prefix/suffix are supported (e.g. it’s

250

251

252

258

254

256

257

258

259

260

261

262

263

264

265

DRAFT

The SCA-SW provides a number of demonstrators for various SCA components, like a demonstrator to
print out ADC conversion results, program a VMM3 chip through SPI, etc.

D.6.2 SCA OPC-UA server

The provided OPC-UA server implementation for the SCA is based on the SCA-SW (explained above)
intending to profit from all features of the SCA-SW library and providing a high-level and user-friendly
OPC-UA address space to OPC-UA clients.

The OPC-UA server has been designed and implemented using the quasar framework (see https:
//github.com/quasar-team/quasar). Its design is presented in Figure 84.

SCAbr=1

cv address

CV communicationStatus
v id

v numberRequests

v numberReplies

cv lastReplySecondsAgo :

: UaString
: Ulnt32
: Ulnt32
: Ulnt64
: Ulntod

Ulnt64

T}

- AnalogInputSystemnr-1
2Coi0 SpiSystemoc—: « cv generalRefreshRate : Double
— sv diagnostics : UaString
SpiSlavenr-1
“ SV write : UaByteString

CE busSpeed s Ulnt32

CE transmissionSize : Byte Analoglnputm;l

¢ slaveld : Byte — ¢V value : Float

cE sclkldleHigh : Boolean cEid : Byte

¢t sampleAtFallingRxEdge : Boolean

¢t sampleAtFallingTxEdge : Boolean

CE 1sbToMsh : Boolean

CE autoSsMode : Boolean

DigitallOSystempr-1 DacSystemor-1
« sV diagnostics : UaString
.32 ¥
DigitallOpi-1 DacOutputor
< SV value : Boolean
CE istnout - Bool « sV voltage : Double
islnput : Boolean - o
Ct : ring
cEid : Byte id : UaString

Figure 84: The quasar design diagram of the OPC-UA server for the SCA.

As of January 2018, the server supports the following functionality:

* Communication with any number of SCAs, through NetlO or any other HDLC backend. Each SCA
is identified in its address-space by a name, and its unique 24-bit “SCA identifier” which is written
by the chip manufacturer in the SCA silicon. The identifier is read using the SCA-SW library when
a connection to given SCA is opened.

e Up to 32 ADC channels per SCA which are polled with the configured conversion frequency. Note
that channel 31 has no external connection; it is connected to the on-chip temperature sensor that
monitors the SCA temperature.

March 19, 2018 — 14:45

90

https://github.com/quasar-team/quasar
https://github.com/quasar-team/quasar
https://github.com/quasar-team/quasar

DRAFT

Up to 32 General Purpose I/O pins per SCA. Each pin can be configured as an input or output
267 through the server config file.

266

Up to 4 DACs per SCA; the DACs take the desired voltage as a float (0..1V).

268

Up to 8 SPI slaves per SCA. The SPI configuration (like speed, phase, mode . . .) can be configured
270 in the server config file.

n

o]

©
L]

271 Up to 16 independent configurable I2C master controllers

272 The JTAG controller is in-progress and not yet available as of January 2018.

23 D.7 References

274 1. SCA-SW gitlab repo

275 (https://gitlab.cern.ch/atlas-dcs-common-software/ScaSoftware)

276 2. Twiki for SCA-SW end-users,

277 (https://twiki.cern.ch/twiki/bin/viewauth/Atlas/AtlasGbtScaOpcUa)
278 3. Twiki for SCA-SW developers

279 (https://twiki.cern.ch/twiki/bin/viewauth/Atlas/ScaOpcUaUserGuide)
280 4. OPC-UA SCA gitlab

281 (https://gitlab.cern.ch/atlas-dcs-common-software/ScaSoftware)

March 19, 2018 — 14:45 91

https://gitlab.cern.ch/atlas-dcs-common-software/ScaSoftware
https://twiki.cern.ch/twiki/bin/viewauth/Atlas/AtlasGbtScaOpcUa
https://twiki.cern.ch/twiki/bin/viewauth/Atlas/ScaOpcUaUserGuide
https://gitlab.cern.ch/atlas-dcs-common-software/ScaSoftware

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

DRAFT

References

(1]

(2]

(3]

[4]

[5]

[6]

[7]

[8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

CERN, GBT & Versatile Link,
URL: https://ep-ese.web.cern.ch/content/gbt-versatile-1link.

F Vasey et al., The Versatile Link common project: feasibility report,
Journal of Instrumentation 7.01 (2012) C01075,
URL: http://stacks.iop.org/1748-0221/7/i=01/a=C01075.

CERN GBT Project, The GBTx Manual, V0.14 (2016),
URL: https://espace.cern.ch/GBT-Project/GBTX/Manuals/gbtxManual.pdf.

GBT Module for the FELIX Project,
URL: https://twiki.cern.ch/twiki/pub/Atlas/GBT2LAN/FELIX_GBT_MANUAL.pdf.

ATLAS Felix Group, Specifications for the FELIX FULL mode link, urL: https://atlas-
project-felix.web.cern.ch/atlas-project-felix/user/docs/FullMode.pdf.

Xilinx, Xilinx VC709 Development Kit,
URL: http://www.xilinx.com/products/boards-and-kits/dk-v7-vc709-g.html.

Supermicro, Supermicro XI10SRA-F Motherboard Model Specification, 2016,
URL: http://www.supermicro.nl/products/motherboard/Xeon/C600/X10SRA-F.cfm.

CERN TTC FMC project, urL: http://www.ohwr.org/projects/optical-cdr-fmc/wiki.
TTC group, CERN TTC homepage (), URL: http://ttc.web.cern.ch/TTC.

Analog Devices Inc., ADN2814: Continuous Rate 10 Mb/s to 675 Mb/s Clock and Data Recovery
IC with Integrated Limiting Amp,
URL: http://www.analog.com/static/imported-files/data_sheets/ADN2814.pdf.

Silicon Labs Inc., Si5345/44/42 Rev D Data Sheet — 10-Channel, Any-Frequency, Any-Output
Jitter Attenuator/ Clock Multiplier,

URL: http://www.silabs.com/SupportDocuments/TechnicalDocs/Si5345-44-42-D-
DataSheet.pdf.

Silicon Labs Inc.,
Si5324 Data Sheet — Any-Frequency, Any-Output Precision Clock Multiplier / Jitter Attenuator,
URL: https://www.silabs.com/documents/public/data-sheets/Si5324.pdf.

Xilinx, Xilinx Vivado Design Suite, 2016,
URL: https://www.xilinx.com/products/design-tools/vivado.html.

Linear Technology, LTC2991 Data Sheet — Octal I12C Voltage, Current, and Temperature Monitor,
URL: http://cds.linear.com/docs/en/datasheet/2991ff.pdf.

The Versatile Link Developers, The Versatile Link Common Project, 2008,
URL: https://espace.cern.ch/project-versatile-1link/public/default.aspx.

CERN GBT-FPGA project,
URL: https://espace.cern.ch/GBT-Project/GBT-FPGA/default.aspx.

March 19, 2018 — 14:45 92

https://ep-ese.web.cern.ch/content/gbt-versatile-link
http://stacks.iop.org/1748-0221/7/i=01/a=C01075
https://espace.cern.ch/GBT-Project/GBTX/Manuals/gbtxManual.pdf
https://twiki.cern.ch/twiki/pub/Atlas/GBT2LAN/FELIX_GBT_MANUAL.pdf
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/docs/FullMode.pdf
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/docs/FullMode.pdf
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/docs/FullMode.pdf
http://www.xilinx.com/products/boards-and-kits/dk-v7-vc709-g.html
http://www.supermicro.nl/products/motherboard/Xeon/C600/X10SRA-F.cfm
http://www.ohwr.org/projects/optical-cdr-fmc/wiki
http://ttc.web.cern.ch/TTC
http://www.analog.com/static/imported-files/data_sheets/ADN2814.pdf
http://www.silabs.com/Support Documents/TechnicalDocs/Si5345-44-42-D-DataSheet.pdf
http://www.silabs.com/Support Documents/TechnicalDocs/Si5345-44-42-D-DataSheet.pdf
http://www.silabs.com/Support Documents/TechnicalDocs/Si5345-44-42-D-DataSheet.pdf
https://www.silabs.com/documents/public/data-sheets/Si5324.pdf
https://www.xilinx.com/products/design-tools/vivado.html
http://cds.linear.com/docs/en/datasheet/2991ff.pdf
https://espace.cern.ch/project-versatile-link/public/default.aspx
https://espace.cern.ch/GBT-Project/GBT-FPGA/default.aspx

	Overview
	Document Compatibility

	Introduction to FELIX
	FELIX Variants and Functionality
	Gigabit Transceiver (GBT) and the Versatile Link
	FULL Mode
	Propagation of ATLAS TTC Information

	Hardware Requirements and Setup
	Recommended Hardware Platforms
	FPGA I/O Hardware: VC-709
	FPGA I/O Hardware: BNL-711
	FELIX Host Systems

	Installation of VC-709
	Installation of BNL-711
	Connecting to an existing TTC system
	VC-709 Only: TTCfxV3 Overview and Installation
	Connecting TTC and BUSY

	Configuring FELIX Clock
	Clock Source Selection
	TTC Clock Recovery: ADN2814
	Clock Jitter Cleaning

	Connecting and Initialising Optical Links
	Physical Link Layer Status: VC-709
	Physical Link Layer Status: BNL-711
	Logical Link Layer Initialisation

	Firmware Releases and Programming
	Firmware Distribution Protocol
	Release Announcements
	Firmware Distribution Site

	Firmware Programming
	JTAG Connectivity
	Setting up the Vivado™ Suite
	Programming the FPGA Directly
	Programming the FLASH ROM (VC-709)
	Programming the FLASH ROM (BNL-711)
	Enabling new FPGA Configuration
	PCIe hotplug procedure

	Software Distribution and Installation
	Software Distribution Protocol
	Pre-requisites
	Release Announcements
	Release Distribution Site
	FELIX Driver
	FELIX Software Suite

	Software Installation Instructions
	Driver RPM Installation Instructions
	DKMS
	Removal of Existing Driver Installations
	Installation of New Driver

	Installation of FELIX Software Suite

	Basic Tools
	E-link Configuration with elinkconfig
	Global Panel
	Data Path Fan Out Selectors: TH_FO and FH_FO
	Data Timeout Control Dialog
	Clock Source Selector Dialog

	To-Host Panel
	From-Host Panel
	Link and Data Generator Configuration Upload Dialog
	Guide to Valid E-link Configurations
	Guide to common configuration tasks
	Working with E-link configurations stored in files
	Modifying the existing E-link configuration on a FELIX card without a file
	Configure L1AInfo E-links to host
	Configure TTC E-links from host
	Configure SCA E-links to/from host

	Low Level Tools (System Status Monitoring & Control)
	flx-info
	flx-config
	flx-init
	flx-reset
	flx-monitor

	Dataflow from Front-end via FELIX to FELIX host PC
	fdaq
	Running DAQ Test with External Data Source
	Running DAQ Test with Internal Data Generation

	Dataflow from FELIX Host PC to Front-end Systems via FELIX
	fupload

	FELIX Configuration Tools
	felink
	Finding E-link ID from GBT/E-group/E-path of GBT/Bit address/width

	fereverse
	fgpolar
	feconf
	femu
	feto
	fflash

	General Debugging Tools
	fcheck
	fedump
	fec
	fuptest
	fplayback

	Remote Hardware Command and Configuration Tools
	fic
	fgconf

	Felixcore Application and NetIO
	Operational Principles
	Configuration
	Monitoring
	FelixCore Native Monitoring
	Monitoring with felix-web-mon
	Compilation
	Usage

	FelixCore Examples
	Tests without an FLX Card
	Tests with an FLX Card

	Connecting to a felixcore instance using NetIO tools
	Connecting to a felixcore instance using FATCAT
	Discovering E-links with the FELIX BUS system
	Debugging
	Using the FelixCore event tracing framework

	Resources for Front-End Developers
	FELIX Firmware Modules for Front-end Users
	Downloading Firmware Source
	GBT Test Modules
	GBT-FPGA
	GBTx

	FULL Mode Test Modules
	Link Layer Tests
	Protocol Tests

	General Hints and Tips
	Known Technical Requirements for FELIX Communication
	Examples of Design Best Practice based on Current Experience
	Frequently Asked Questions

	Appendices
	Setting up a TTC System for use with FELIX
	Tuning a TTC system
	Guide to TTC ChannelB
	B channel decoding firmware
	Channel B decoding software

	Useful documents

	BNL-711 Technical Information
	User Jumper Map and Functional Specification
	J1
	J2
	J8
	JMP1

	JMP2
	JMP3
	JMPR1 & JMPR2

	MiniPOD Connectivity Map

	Guide to FELIX Data Structures
	Guide to Using FELIX with GBT-SCA
	Introduction
	Typical test setup
	Operation to set up an SCA e-link
	Low level operations with fec tools to configure and establish basic communication
	The integrated production system – Introduction
	The SCA software (SCA-SW), its demonstrators and the OPC-UA SCA Server
	SCA-SW library
	SCA OPC-UA server

	References

