

ATLAS Internal Note

ATL-X-XX-NNNN

Version 1.5

30 January 2018

The “flx” device driver

Authors : M. Joos, J. Vermeulen

 comments and queries to Markus Joos, CERN

+41 22 767 2364

Markus.Joos@cern.ch

Abstract

This note describes the user interface of the “flx” device driver that has been developed in order

to control the FELIX PCIe I/O cards that will be used in the ATLAS Read-Out system.



- 2 -

Introduction

The “flx” driver is a conventional device driver for a PCIe device. It supports the detection of

FELIX cards on the basis of the DID/VID, handles interrupts and provides a number of ioctl

functions. One of these functions (the SETCARD function) allows user processes to obtain

physical addresses for the resources of the FELIX card. It is therefore possible to develop user

S/W that manages the FELIX cards without context switching for simple I/O operations.

The driver is work in progress and will have to track the evolution of the FELIX H/W. However,

the dependency on firmware / hardware properties is small.

It is not yet known if the driver in its current form is protected from race conditions that may

arise from concurrent accesses from multiple, independent processes.

In the ATLAS framework, the flx driver will usually be used together with the cmem_rcc driver

and (optionally) the io_rcc driver. Documentation for these drivers is available from M. Joos.

Capabilities of the file /proc/flx
The “flx” driver creates a file with the name “flx” in the /proc file system. When read (e.g. “more

/proc/flx”) the file provides information about the status of the hardware. Writing to the file (e.g.

“echo debug >/proc/flx”) enables the user to change e.g. the level of verbosity of the debug

output. See below for details.

Parameters of the driver
The flx driver can be configured by the user within certain limits. The table below specifies the

supported parameters and their meaning as well as the user interface to them.

Name of the
parameter

User interface Description

debug /proc/flx and insmod Setting the parameter to “1” enables verbose debug output to
/var/log/messages. This can be done as follows:

• insmod flx.ko debug=1

• echo debug >/proc/flx
Setting the parameter to “0” disables verbose debug output to
/var/log/messages. This can be done as follows:

• insmod flx.ko debug=0

• echo nodebug >/proc/flx
Default: disabled

errorlog /proc/flx and insmod Setting the parameter to “1” enables verbose error output to
/var/log/messages. This can be done as follows:

• insmod flx.ko errorlog=1

• echo elog >/proc/flx
Setting the parameter to “0” disables verbose error output to
/var/log/messages. This can be done as follows:

• insmod flx.ko errorlog =0

• echo noelog >/proc/flx
Default: enabled



- 3 -

msiblock insmod This parameter controls the number of MSI-X interrupts that the
FELIX card can handle. It can be selected in the range 1 – 8.

Default: 8

Interrupt capabilities
The FELIX cards use MSI-X interrupts in order to signal asynchronous events to the operating system. Per

installed card, the driver supports up to 8 interrupts, enumerated from 0 to 7. The number of interrupts

is specified in the source of the driver by a constant (MAXMSI) and is determined by the firmware. There

is no specific dependence of the driver on the nature of the interrupts. When the driver gets loaded into

the kernel (this usually happens at boot time) all interrupts are by default disabled. The user library

(FlxCard API) provides a method for enabling interrupts.

Description of the ioctl functions
Developers of user code are advised not to directly interface to the driver (i.e. not to call ioctl functions)

but to use the Low-Level API. For details, refer to this document.

Internal implementation (not relevant for users)
The ioctl function is called with a file descriptor, the ioctl name and, if applicable, a user

parameter. After opening the driver, the first ioctl function to be called is the SETCARD function,

with a pointer to a struct of type card_params_t as user parameter. The card number has to be

stored in this struct before calling the ioctl SETCARD function. The function copies the BAR0,

BAR1 and BAR2 addresses as well as the sizes of the memory areas associated with these base addresses

to the struct. The addresses are physical addresses. After mapping to virtual addresses the registers

can be addressed directly from used space.

The file descriptor also contains a pointer (“private_data”) to a second struct of type

card_params_t. The same information as stored in the struct mentioned above is also stored in

this struct by the ioctl SETCARD function, so that the file descriptor is associated with a card

number and also with the information on the memory areas (NB: the information on the memory areas

is not used in the driver, so the pointer could as well point to a single integer with the card number). The

card number is set to 0 when opening the driver.

An interrupt causes a flag associated with it to be set and a process can wait for this to occur. By setting

all flags with the ioctl CANCEL_IRQ_WAIT function, any process waiting for an interrupt will be

woken up.

The IOCLT entry points

CANCEL_IRQ_WAIT--
ioctl name CANCEL_IRQ_WAIT

https://espace.cern.ch/ATLAS-FELIX/Shared%20Documents/SW_Documentation/FlxCard_API.docx?Web=1



- 4 -

Type of user parameter int *
Purpose of user parameter Send data to the driver

Description:

This function wakes up processes currently waiting for the interrupt with the number specified in the

integer pointed to from the FELIX card by setting the corresponding interrupt flag.

CLEAR_IRQ--

ioctl name GET_IRQ_COUNTER

Type of user parameter int *
Purpose of user parameter Send data to the driver

Description:

This function clear unsolicited interrupts. If the H/W has sent interrupts while the S/W is not yet ready

to handle them, the interrupts will “pile up” in the driver. A call to CLEAR_IRQ clear old inetrrupts.

GETCARDS--
ioctl name GETCARDS

Type of user parameter int*

Purpose of user parameter Receive data from the driver

Description:

This function returns the number of FELIX cards that have been found in the computer in the int

variable pointed to by the user parameter.

GET_TLP--

ioctl name GET_TLP

Type of user parameter int*

Purpose of user parameter Receive data from the driver

Description:

Provides the maximum TLP size (for background information see for example "Down to the TLP: How PCI

express devices talk", http://xillybus.com/tutorials/pci-express-tlp-pcie-primer-tutorial-guide-1) in

multiples of 128 bits as obtained from the configuration space. The TLP size is needed for initialization of

http://xillybus.com/tutorials/pci-express-tlp-pcie-primer-tutorial-guide-1



- 5 -

the DMA controller. Recently (15 May 2017) the user API was changed and the TLP size is no longer a

parameter. Therefore the GET_TLP ioctl will be called only from the FlxCard library.

MASK_IRQ--

ioctl name
MASK_IRQ

Type of user parameter int*

Purpose of user parameter Send data to the driver

Description:

This function disables the interrupt with the number specified in the integer variable pointed to by the

user parameter.

 UNMASK_IRQ--
ioctl name

 UNMASK_IRQ

Type of user parameter int*

Purpose of user parameter Send data to the driver

Description:

This function enables the interrupt again after a call of the ioctl MASK_IRQ function with the

number specified in the int variable pointed to by the user parameter.

RESET_IRQ_COUNTERS--
ioctl name

RESET_IRQ_COUNTERS

Type of user parameter int*

Purpose of user parameter Send data to the driver

Description:

With each interrupt a counter is associated that counts the number of interrupts observed. The count is

displayed in /proc/flx. This function resets the counter with the number specified in the integer

variable pointed to by the user parameter.

WAIT_IRQ--
ioctl name WAIT_IRQ



- 6 -

Type of user parameter int*

Purpose of user parameter Send data to the driver

Description:

The process calling this function will be put to sleep until the flag associated with the interrupt with the

number specified in the int variable pointed to by the user parameter is set. The function resets the

flag after the process was woken up.

SETCARD--

ioctl name SETCARD

Type of user parameter pointer to struct of type card_params_t

Purpose of user parameter Send data to and receive data from the driver

Description:

The user specifies the card number (enumerated from 0 to N-1) of a FELIX card in the “slot” variable of

the card_params_t structure. Then it calls the ioctl function. The driver fills the other variables

(e.g. the PCI bas addresses) of the card_params_t structure with data, returns the structure to the

user and associates the card number with the file descriptor, see also the beginning of this section.

As from version 3.0.0 (RPM version) of the driver the user can also set the variable lock_mask in

card_params_t. It defines which resources of the FLX card (e.g. DMA channels or I2C interfaces)

must only be accessed by the calling process. See the API document for further information.

GETLOCK--
ioctl name GETLOCK

Type of user parameter pointer to u_int

Purpose of user parameter Send data to and receive data from the driver

Description:

This ioctl can be used to retrieve the locking bits for a given FLX card.

RELEASELOCK--
ioctl name RELEASELOCK

Type of user parameter pointer to struct of type lock_params_t

Purpose of user parameter Send data to the driver

Description:



- 7 -

This ioctl allows an application to release locked resources.

To be done:

- discuss which commands should be implemented via the proc_write interface (such as enabling

debugging or clearing interrupts)

- Add text about the “global interrupt strategy”

o What types of interrupts exist?

o What are typical use cases?

o How are stacked interrupts dealt with?

o Can two processes wait for the same interrupt?

o How do interrupts get acknowledged? Is it done automatically by the driver or can there

be cases where the acknowledgement has to be done in the user code?

