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Abstract: The RHIC interaction rate at sPHENIX will reach around 3 MHz in pp collisions and31

requires the detector readout to reject events by a factor of over 200 to fit the DAQ bandwidth32

of 15kHz. Some critical measurements, such as heavy flavor production in pp collisions, often33

require the analysis of particles produced at low momentum. This prohibits adopting the traditional34

approach, where data rates are reduced through triggering on rare high momentum probes. We35

explore a new approach based on real-time AI technology, adopt an FPGA-based implementation36

using a custom designed FELIX-712 board with the Xilinx Kintex Ultrascale FPGA, and deploy37

the system in the detector readout electronics loop for real-time trigger decision.38
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1 Motivation43

Realizing the science potential of modern nuclear physics (NP) experiments at colliders relies on44

the collection and processing of very large datasets, with sustained data rates from future detectors45

exceeding Terabits per second. Critical measurements in NP data often require the analysis of46

complex final states of particles produced at low momentum. This prohibits adopting the traditional47

approach used in high energy physics, where data rates are reduced through online event selection48

(“triggering”) on rare high momentum probes that can be readily distinguished from the background.49

On the other hand, archiving the full detector data stream exceeds current DAQ bandwidth limits50

and would lead to cost-prohibitive offline storage and analysis computing requirements. We propose51

to develop real-time AI technologies, implemented in the detector readout electronics loop, that52

address these challenges for the next generation of NP experiments at RHIC and EIC. First, we53

will deploy a demonstrator that is being developed under the current Fast-ML project for the pp54

running in the sPHENIX experiment in 2024, and then generalize our approach for applications in55

experiments at the EIC, using future generations of EIC detector technologies.56

The triggered readout rate of sPHENIX is limited to 15 kHz due to the design of the calorimeter57

readout system, which places limitations on the overall data volume and the expected collision rate.58

In pp collisions, RHIC delivers collision rates of 3 MHz, limiting sPHENIX to collect less than 1%59

of heavy-flavour (HF) events of the total pp (and p+Au) rate when using triggered readout. The60

extended Streaming readout (SRO) of the tracking detectors can further improve the statistics up to61

10% of the total luminosity. The goal of this project is to sample the remaining luminosity further62

enhancing the collected data samples. The aim is to deploy a future system on the Electron-Ion63

Collider (EIC) to identify the (non)interesting Deep-Inelastic-Scattering processed in the e+p/A64

collisions.65

2 sPHENIX detector66

The sPHENIX detector [1] is located at the RHIC accelerator complex in BNL. The solenoid magnet67

provides a magnetic field of 1.4 T and the detectors have a pseudorapidity coverage of |𝜂 | < 1.1.68

The sPHENIX running period is 2023 - 2025, where 2023 was dedicated to commissioning,69

2024 to pp collisions, and 2025 to Au+Au collisions. The main central barrel tracking detectors70

are the Microvertex Detector (MVTX), Intermediate Tracker (INTT), Time Projection Chamber71

(TPC), and TPC Outer tracker (TPOT), and the central barrel calorimetry system - Electromagnetic72

Calorimeter (EMCAL) and Hadronic Calorimeter (HCAL). The sPHENIX detector schematic is73

shown in figure 1 (left). The tracking detectors are capable of SRO. Even-though they are able to74

record all data, the data volume of the TPC detector exceeds the capability of the computing center75

and therefore a down-selection of what to save must be done. In the absence of online reconstruction76

to identify interesting HF events, a random selection of events based on the minimum bias trigger77

detector is done. The aim of this project is to reconstruct tracklets from the silicon detectors in78

order to search for signatures of HF decays based on unique topology, and provide an additional79

trigger to sPHENIX.80

Silicon detectors The three innermost tracking layers (the MVTX detector) are based on Mono-81

lithic Active Pixel Sensors (MAPS), the ALPIDE, originally developed for the ALICE experiment.82
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Figure 1. Left: The sPHENIX detector with highlighted central barrel detectors. Right: Installation of
MVTX and INTT detectors.

The ALPIDE offers very fine pitch of 27 𝜇m x 29 𝜇m, collision event time resolution of 5 𝜇s; the83

MVTX contains a total of 270M channels. The next two layers (the INTT detector) contain silicon84

strip sensors (manufactured by Hamamatsu) with a pitch of 78 𝜇m x 16 (or 20) mm with 360k85

channels in total. Both detectors are shown in figure 1 (right).86

sPHENIX readout, trigger and timing distribution The schematic of the sPHENIX readout87

chain is shown in figure 2. The tracking detectors’ Front-End Electronics (FEE) sends data to88

the Event Buffer and Data Compressor (EBDC) through the FELIX (FLX-712) [2] interface card.89

The calorimetry detectors’ Front-End Modules (FEM) send data to the SubEvent Buffer (SEB)90

through the Data Collection Module (DCM2). The trigger and timing information is distributed91

via the Granule Timing Module (GTM). The Global Level 1 Trigger (GL1) and machine clock92

are transmitted to the FELIX cards for the tracking detectors and to the FEM for the calorimeters.93

There can be up to 4 LEMO and 4 Fiber connections to the GTM with 64 trigger inputs total.94

The most used trigger inputs are from the Hadronic Calorimeters for the cosmic and high energy95

jet triggers (normally not pre-scaled) and Minimum-Bias Detector for the beam collision trigger96

(heavily pre-scaled). The goal is to provide an additional high efficiency trigger input for HF events97

in pp collisions.98

Figure 2. A schematic of sPHENIX readout chain. The calorimetry data are sent from Front-End Modules
(FEM) to the SubEvent Buffer (SEB) through the Data Collection Module (DCM2), and the tracking data
from Front-End Electronics (FEE) are sent to the Event Buffer and Data Compressor (EBDC) through a
FELIX interface card.
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2.1 The DAQ-AI Data Flow99

Data from the MVTX and INTT are transmitted from the FELIX-DAQ board to the AI-Engine. It100

was decided that the AI-Engine will be hosted on a widely HEP community supported FELIX board101

for the following 3 reasons. First, FELIX offers 48 high-speed optical links to receive data; second,102

to reuse its Wupper module for the PCIe communication and associated software tools; and third,103

to use the sPHENIX infrastructure for tracking detectors that was built around the FELIX cards.104

The AI-Engine houses the raw data decoder, event builder, clusterizer, and GNN models to provide105

fast tracking and the trigger decision. The trigger decision is sent via a LEMO cable to the GTM.106

Since the decision is based on a event topology, a reference point (beam spot), which changes in107

time, must be precisely known and monitored. A GPU based feed-back system will be in place to108

process the data from the buffer boxes, reconstruct the beam spot position and update the position109

in the AI-Engine. The schematic of the data flow is shown in figure 3.110

There are 144 optical links running at 3.2 Gbps per fiber for the MVTX alone, thus two engines111

will be used, one for each MVTX/INTT hemisphere. This will allow to have 24 links for MVTX and112

24 links for INTT. Since the DAQ, AI-Engine, and GTM sit in the Counting house, away from the113

radiation environment, it is not necessary to use radiation-hardened protocols. The FELIX optical114

links have been tested up to 14 Gbps with BER < 10−16 with an external loop-back measurement.115

INTT offers excellent time resolution to tag 100 ns RHIC bunch-crossing time to assign a unique116

timing to each collision event.

Figure 3. The schematic of the DAQ-AI data flow.
117

2.2 Latency breakdown118

The TPC buffers can hold up to 30 𝜇s of data. As we need to capture both sides around the triggered119

event, the aim is to deliver the trigger decision with 10 𝜇s. The MVTX contributes up to 5 𝜇s120

latency, the cables between the interaction region and counting house contribute around 0.3 𝜇s121

(81m fibres). Forwarding data to the AI-Engine and decoding them takes up to 0.6 𝜇s, which results122

from the maximum depth of FIFO holding the decoded hits (128). This leaves around 4 𝜇s for123

the AI engine to perform tracking and trigger decision. The real latency of the decoding and data124

transmission depends on the occupancy, which is estimated to be around 50 physics hits per chip per125

event. The AI-Engine needs to ensure the latency is fixed, either by delaying the trigger decision,126

or vetoing the processing by decoding the bunch-crossing numbers from MVTX and INTT.127
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Table 1. Efficiency and Background Rejection with 1% and 0.1% signal/noise Ratios.

1% signal/background ratio
Bg. rejection Efficiency Purity

90% 72.5% 7.25%
99% 15.0% 15.0%

0.1% signal/background ratio
Bg. rejection Efficiency Purity

90% 78% 0.78%
99% 17% 1.7%

3 Model description128

The model is based on Graph Neural Network (GNN) using PyTorch and PyTorch geometric. The129

aim is to reconstruct the decay topology of the tracklets and search for secondary (displaced) vertices,130

which is one of the prominent features of HF decays. The displaced vertex will be ∼ O(100 𝜇m)131

away from the primary vertex which has resolution ∼ O(10 𝜇m). We propose a novel method for132

treating events as graphs consisting of tracks as nodes and interconnection between tracks when they133

belong to the same particle decay rather than hit graphs [3]. Further improvement can be achieved134

by estimating the transverse momentum, 𝑝T, based on the tracks. A 15% improvement is observed135

in the trigger decision performance, as expected. There are three stages in event processing: hit136

clustering, track reconstruction, and trigger decision. We use the GNN models in the second stage to137

reconstruct tracks, remove outliers (TrackGNN), and regress the track momentum onto the learned138

tracks. In the third stage, we design a bipartite GNN to reconstruct displaced vertices based on139

the corresponding tracks generated from decays and the estimated track momentum and estimate140

the probability of event being a trigger. The flowchart is shown in figure 4 and the efficiency and141

background rejection with 1% and 0.1% signal/noise ratios are summarized in Tab. 1.142

Figure 4. Flowchart of the GNN network.

4 Generation of the GNN IP core143

We propose two parallel efforts to implement the software sPHENIX model onto FPGA, both use144

High-Level Synthesis (HLS) tools to generate synthesizable Register Transfer Level (RTL) code,145

i.e., Verilog. The first effort, manually translates the sPHENIX model into synthesizable C code146

and feeds it into the HLS tool, Vitis HLS [5], and then performs targeted optimization of the model147

following the FlowGNN architecture [6], which is the state-of-the-art GNN architecture on FPGA.148

The second effort is based on the hsl4ml framework [4], which is a generalized package to translate149

neural networks, such as deep neural networks (DNNs) and GNN, into an IP core. The target is to150

have a model implemented on FPGA that can process 100-200 nodes (hits) and 200-500 edges (hit151

connections) within ∼ O(10 𝜇s).152
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FlowGNN Architecture with on-FPGA Implementation The current TrackGNN model in153

sPHENIX we are using has one GNN layer, which includes 4 multi-layer perceptron (MLP) layers154

for both node and edge embedding with a dimension of 8. The proposed architecture follows the155

message-passing framework in FlowGNN [6]: the node embeddings are processed first, followed156

by an adapter to orchestrate the node information to the correct edge processing units for edge157

embedding computation and message aggregation. We also use quantization to reduce the data158

precision and to reduce the memory and computation requirements. We use ap_fixed<18, 6> for159

node embeddings, edge embeddings, and model weights and bias, and use ap_fixed<21, 9> for160

messages and input node features. The target FPGA board is the Alveo U280, approximately twice161

as big as FELIX FLX-712. The resource utilization is as follows: 194K (14.9%) LUT, 214K (8.2%)162

FF, 406 (20.2%) BRAM, and 488 (5.4%) DSP. The processing latency is measured on-board in an163

end-to-end fashion, including graph and weight loading, model computation, and results readback.164

The latency for an average-sized input (92 nodes and 142 edges) is 8.82 𝜇s at a 285 MHz clock.165

The time-size scatter plot for nodes and edges are shown in figure 5, where the x-axis is the time166

spent processing one graph, and the y-axis is the graph size in terms of the number of nodes and167

edges. Compared to CPU calculations, the FPGA was 99.86% accurate.168

Figure 5. The time-size scatter plot of the TrackGNN model measured at Alveo U250. Left: for the nodes
size. Right: for the edges size.

hls4ml A parallel effort to translate the model using hls4ml just started. The framework has been169

extensively used at CMS and we expect to have a first version of the inference at the end of October.170

5 Summary and Outlook171

Different modules of the AI-Engine has been tested independently, the final development is focused172

towards combining them into a single FPGA board. A further iterations with the model developers173

is done to account for the FPGA utilization. The beam test is expected in 2024 during RHIC pp run.174
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