

Outline

Jet Evolution and Virtuality

Complementary measurements at RHIC & LHC

Jet Partonic Composition

Higher quark-jet fraction at RHIC

LHC gluon-jet dominated until significantly higher jet energies

Complementary measurements at RHIC & LHC

Subsystems

- HCal: Tilted Steel-Si plates
 - Inner and Outer HCal
 - $-\Delta \phi \times \Delta \eta = 0.1 \times 0.1$
- 1.5T Superconducting magnet
 - From BaBar, cold tested at BNL
- EMCal: W-Si fiber
 - $-\Delta \phi \times \Delta \eta = 0.025 \times 0.025$
- Tracker: vertex + outer tracker
 - Options still being considered, including MAPS inner tracker with gateless TPC

EMCAL + HCAL $\sim 5.5 \lambda$

Radii

Specifications for Jet Measurements

- Jets
 - Energy resolution
 - Single particle: $\sigma/E < 100\%/\sqrt{E}$
 - Jet: $\sigma/E < 120,150\%/\sqrt{E}$ in p+p, A+A
 - Measure R = 0.2 jets $\rightarrow \Delta \phi \times \Delta \eta = 0.1 \times 0.1$
 - Energy scale uncertainty < 3%
 - Reject (>95%) high p_T charged track backgrounds → HCal
- Dijets
 - > 70% containment for R=0.2 dijets \rightarrow 0 < ϕ < 2π, |η| < 1
- Fragmentation Functions
 - Δp/p < 0.2% p tracking resolution out to 40GeV/c \rightarrow 1.5T magnet
 - Independently measure E and p
 for z = p/E → Tracker

- Gamma-Jet
 - − EMCal resolution $\sigma/E < 15\%/\sqrt{E}$
 - EMCal trigger in p+p and p+A, rejection > 100 for E > 10 GeV
- Heavy Flavor-Jet
 - Electron ID at $p_T > 4$ GeV/c
 - DCA < 100 μ m for p_T > 4 GeV/c electrons
- High statistics→ 15 kHz DAQ rate
 - Jets without trigger bias

GEANT4 Simulations

Test Beam at FermiLab

Early Test Beam Results

HCal energy distributions well described by simulation

Meets design goals of <100%/ \sqrt{E} and <15%/ \sqrt{E} for EMCal

Jet Reconstruction

Inspired by ATLAS' heavy ion jet reconstruction:

Jet Reconstruction

Fluctuations in the underlying event create 'fake jets'

Jet Energy Resolution and Unfolding

Unfolding corrects for the resolution and underlying event fluctuation effects

Increased Luminosity at RHIC

22-weeks 200 GeV Au+Au

→ 100B Min Bias events

High statistics requirement met

Luminosity projections from C-AD

pQCD Jet Rates

 $10^4 \, \gamma_{dir} \, p_T > 20 \, GeV/c$

Increased Kinematic Range

Overlap with LHC

Path Length Dependence

Important constraint to energy loss models

Fragmentation Functions, D(z)

Energy distribution within the jet \rightarrow Dynamics of jet quenching

 $X \equiv$ fraction of parton energy retained in jet cone

Gamma-Jet

Advantageous γ_{dir} -to- π^0 ratio at RHIC

b-Jets

Sensitive to collisional vs radiative energy loss

b-Jet Tagging

Methods

Require a precision vertex detector

Multiple large DCA tracks

Secondary vertex mass

 B-meson tagging by semileptonic decay or by m_{Inv B}

Conclusions

- sPHENIX design tailored to jet physics
- RHIC and LHC perform complimentary measurements
- Rich future in jet physics with sPHENIX
 - Dijet, Frag. Func.,γ+jet, b+jet, etc.

backup

Gamma-Jet

sPHENIX timeline

Sarah Campbell - RHIC/AGS Use