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Abstract

The reconstruction and selection of D0 → K−π+ in simulated Au+Au collisions with
the sPHENIX detector is presented. Approximately 22 million minimum bias events
were generated at

√
sNN = 200GeV using the HIJING event generator, corresponding

to roughly 20 minutes of data taking at a collision rate of 15 kHz.
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1 Introduction

The reconstruction of open-charm hadrons is a key requirement of the sPHENIX experiment
which will commence data-taking in Spring 2023. As with any new detector, the initial data-
taking period will be devoted to commissioning the experiment. This involves ensuring the
correct operation of all subsystems, the tracking, calorimeter calibration and calculation of
physics objects. Preparations for the latter requirement is the focus of this note. A detailed
commissioning timeline has been agreed by the collaboration which is publicised within the
Beam Use Proposal [1]. The timeline is given in Table 1 for completeness.

Weeks Details

2.0 low rate, 6-28 bunches
2.0 low rate, 111 bunches, MBD L1 timing
1.0 low rate, crossing angle checks
1.0 low rate, calorimeter timing
4.0 medium rate, TPC timing, optimization
2.0 full rate, system test, DAQ throughput

12.0 Total

Table 1: Timeline for sPHENIX commissioning period in 2023, the first year of operation.
Copied from the sPHENIX 2022 beam use proposal [1].

A challenging aspect of the commissioning period will be the reconstruction of D0 →
K−π+1 as it is both reasonably rare and the decay products often have a transverse mo-
mentum (pT ) less than 1GeV. This channel is also key to realising the b-physics program
of sPHENIX as the separation of prompt and non-prompt open-charm decays is used to
tag probable b-hadrons [2, 3, 4]. The number of D0 → K−π+, ND0→K−π+ , produced is
proportional to the integrated luminosity, L, and is roughly given by

ND0→K−π+ ≈ Lσcc̄2NcollfD0BF(D0 → K−π+)ε2accε
2
trackεsel (1)

where σcc̄ is the production cross section for charm-quarks (about 1/60th of the total inelastic
cross-section [5, 6]), Ncoll is the number of binary collisions, fD0 is the D0 fragmentation
fraction (about 40% [7]), BF(D0 → K−π+) is the D0 → K−π+ branching fraction (about
4% [8]), εacc is the geometrical acceptance efficiency (about 23%, see Section 3.2), εtrack is
the tracking efficiency (about 80%, see Section 3.3) and εsel is the selection efficiency. The
factor of two comes from producing 2 charm quarks which are equally likely to go through a
D0 → K−π+ decay and the squares on the acceptance and tracking efficiencies comes about
from both efficiencies applying equally to each daughter track. This means the the expected
yield of D0 → K−π+ is given by

ND0→K−π+ ≈ LNcollεsel × 10−5 (2)

1Charge conjugation is implied throughout this note unless otherwise stated.
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The aim of this note is to understand the topological and kinematic variable distributions
of D0 decays in Au+Au collisions at sPHENIX and hence optimise εsel. This note is intended
to act as a baseline reference for the initial selection of D0 → K−π+ in the commissioning
period. Several aspects of the experiment data pipeline will be improved during the commis-
sioning period as the collaboration sees and understands the initial data, most importantly
the tracking. It is expected that the momentum resolution will undergo improvements in
the initial period and this resolution has a direct impact on the D0 resolution. Due to the
large data volume and need for a fast turnaround on physics object construction, we will
pre-select tracks that share signatures with a heavy flavor decay (as examples, tracks with
a large pT or large distance-of-closest approach to the primary vertex) and then save these
track seeds and clusters to a smaller data file to re-run the track fitting with improved align-
ment parameters. It is important then to understand what these variables look like and
select tracks with loose enough cuts to catch tracks that may not have the best resolution
yet but the cuts need to be tight enough to reject a large portion of the background. The
reconstruction of D0 then serves as an important indicator that the sPHENIX collaboration
is ready to produce physics results.

The note after this introduction is arranged as follows; the general simulation setup of the
generators and detector, along with the generated statistics is detailed in Section 2, the tools
developed within sPHENIX to understand the decay topology are described in Section 3,
the base selections applied to the simulation data set is detailed in Section 4, the models
used to describe the invariant mass distributions are described in Section 5 and the results
are presented in Section 6.

To avoid biases, the signal was modelled using D0 → K−π+ decays simulated in p+p
collisions using Pythia8 while the background was modelled using HIJING events outside
of the invariant mass search window. Comparisons of the signal-to-background ratio are
made between candidates selected using direct cuts and machine-learning methods.

2 Simulation

This study used two different data sets. One data set consisted of p+p collisions at
√
s= 200GeV

using Pythia8 [9] as an event generator. Pythia8 was tuned to approximate the minimum
bias collision environment at RHIC [10] but, after the initial generation, each event was re-
quired to have a cc̄ pair produced to enrich the D0 → K−π+ statistics. The RHIC collision
rate for p+p collisions is almost 10MHz and some of the sPHENIX detectors integrate their
hits over a longer period that this and hence, there is an out-of-time pileup effect. This effect
was implemented as part of our simulation. A total to 50 million events were generated in
this fashion and they were used to model the D0 → K−π+ signal shape and variable distri-
butions. This was intended to avoid biases in the final selection and fitting by not using the
same D0 → K−π+ candidates for both selection and testing.

The second data set consisted of minimum bias Au+Au collisions at
√
sNN = 200GeV

using HIJING [11]. Unlike the p+p sample, there was no further requirements on the
generator to enrich the D0 → K−π+ purity. This sample was used for both background
modelling and for the final test of the selection. The background sample was taken from
a region outside the invariant mass range to ensure there is no bias in the final selection.
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Almost 22 million events were generated which corresponds to a little over 20 minutes of
data taking at the peak RHIC Au+Au collision rate of 15 kHz.

The detector was simulated using the Geant4 package [12]. The simulation consists
of the beam pipe and all detectors, except the event plane detector (sEPD) which is not
used for this study. In the interaction region, the beam pipe consists of a beryllium section
with an inner radius of 2 cm and a thickness of 762µm. The volume inside the beam pipe
is simulated as a vacuum. The monolithic active pixel sensor vertex detector (MVTX) is
simulated after the beam pipe and extends from 2.4 cm to 5.3 cm. It consists of a three
layer vertexing detector with a timing resolution of approximately 5µs and hence sees the
out of time pile-up effect. This effect is accounted for by duplicating the hits with a time
delay in Geant4. The next detector radially is the intermediate tracker (INTT) which
consists of a two-layer silicon strip detector with a timing resolution capable of resolving the
10MHz collision rate. The INTT sits between 7.2 cm and 10.3 cm, radially. A compact time
projection chamber (TPC) sits beyond the INTT up to a radius of 80 cm and provides the
momentum measurement for tracks in sPHENIX. The TPC integrates over a period of 34µs
and also sees the out-of-time pileup effect. The final tracking detector is the TPC outer
tracker (TPOT) which consists of 8 GEM detectors below the TPC in the vertical direction.
This acts as a final measurement point in the tracking to account for the distortions and drift
in the TPC tracks. As well as the tracking detectors, there are two hadronic calorimeters
and an electromagnetic calorimeter in the simulation. As they are not used to identify the
D0 candidates, they are not described in this note. Between the two hadronic calorimeters,
there is a 1.5 T superconducting solenoidal magnet which is also simulated. The tracking is
performed using A Common Tracking Software (ACTS) [13, 14].

3 Toolkit

3.1 KFParticle

The candidate reconstruction was performed by KFParticle, originally designed by the
CBM collaboration [15] and adapted to be used within the Fun4All framework [16]. The
internal logic of the package has been largely unchanged since its previous description in the
sPHENIX framework [17] except for small bug fixes or additional output variables for users.
The main update since the previous note is the addition of a “decay descriptor” to simplify
the user interface.

The decay descriptor is a string that users write to specify the decay topology and is
parsed by the top interface class before any event processing. If the descriptor can not be
understood by the parser, a warning will be raised and the module will not be added to the
node tree although Fun4All will still run. The decay parser checks each particle the user
specifies against the particle database found in ROOT’s TDatabasePDG to ensure it exists.
If the particle does not exist, this will be written to the user. Similarly, if the parser cannot
interpret the charge of a track, the user will also be notified of the offending track. All other
instances of the parser not understanding the string will be written as a standard warning.
An example decay descriptor is as follows

[B+ -> {D0bar -> K^- pi^+} pi^+]cc

3



This is interpreted as a B+ hadron decaying to an intermediate D0 and an isolated
charged pion. The mother is always written to the left of a -> and intermediate decays
are always contained within {} braces. The charge of a track is written as either +, - or
0 directly after a caret (^). If you wish to also search for the charge conjugate decay, the
entire descriptor must be contained with square braces and appended with cc or CC for
charge-conjugate. From this, KFParticle knows how many intermediate decays there are,
how many tracks are in each intermediate state and final state as well as the charges of all
tracks. It also knows if it needs to bring the intermediate states back to a common vertex
or associate them to any other final state tracks.

3.2 DecayFinder

DecayFinder is a new package that runs over the truth record of an event. It searches for
decays specified by the user and accepts input ranges for the final state particles pseudorapid-
ity, η, and pT . It effectively measures the geometrical acceptance of a decay. DecayFinder
also uses a decay descriptor with the same logic as KFParticle, so users can just repeat the
string they wrote previously. DecayFinder begins by looking for the HepMC2 record [18]
on the node tree, if this doesn’t exist then it will fall back to using the Geant4 truth record.
The tool loops over the truth container to find the required mother and, when this is found,
the decay products will be analysed. There is an internal list of resonances that will be
further analysed if seen in the mothers decay chain. For example, a ϕ(1020) resonance often
decays to two kaons. If a user is looking for two kaons in the final state, then the ϕ(1020) will
be studied further. This resonance would not automatically be seen by sPHENIX without
reconstructing the dikaon pair first. If the ϕ(1020) is specified in the decay descriptor, it
will be removed from the internal resonance list and treated as an integral part of the decay
chain.

It is possible to limit the decay volume of some event generators such as Pythia8. If
this occurs, the HepMC2 record will not contain the full information of the event. In this
case, DecayFinder can detect that the decay volume was limited and switch to searching
the Geant4 truth record when this boundary is discovered2. When DecayFinder detects
a final state track (e±, µ±, π±, K±, p or p̄), it calculates the track’s η and pT and compares
this to the user specified values3. If all tracks pass the requirement, DecayFinder tags
the decay as reconstructable. The barcodes, embedding IDs and PDG IDs of all particles
in a reconstructable decay can be written to the node tree for further analysis. When
DecayFinder finishes, it can write a report of how many decays were generated, how
many had at least one track fail the pT requirement or had at least one track fail the η
requirement or had at least one track fail both the pT and η requirements and finally how
many decays fell within the required acceptance. DecayFinder is also capable of triggering
on events that have all particles within the sPHENIX acceptance.

2This boundary appears as a null pointer when calling a particle’s end vertex in HepMC2
3The default values are pT ⩾ 0.2GeV and |η| ⩽ 1.1
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3.3 HFTrackEfficiency

HFTrackEfficiency uses the output of DecayFinder to match final state tracks to the
decay products that DecayFinder claims are all in the required acceptance region. When
each trackable particle is found in the truth record, the reconstructed track map is iterated
over and the 3-momentum of the truth and reconstructed objects is compared. If all three
values match within a specified limit4 then HFTrackEfficiency counts that particle as
reconstructed. The user can specify that they would like to have the results of the search
output to an nTuple. This nTuple contains the truth momenta, PID and η for each trackable
particle as well as the reconstructed momenta of the track, if it exists. There is also a boolean
flag to say whether that track was or was not reconstructed. The mothers true momenta,
PID and η are also written to the file along with the reconstructed mass as seen by ACTS,
assuming all tracks were reconstructed. This files gives a direct look at the tracking efficiency
for heavy flavor particles.

As with DecayFinder, HFTrackEfficiency is also capable of triggering when all
final state particles are reconstructed. As well as this triggering, it can also write the recon-
structed tracks back to the node tree in a subset of the track map. This is only done when
all tracks are reconstructed for a decay and so allows users to build a decay without any
selections which is useful for studying the decays kinematic distributions.

4 Selection

The D0 candidates were selected using kinematic and topological variable cuts. The cuts
are applied to the daughter tracks, secondary vertex and reconstructed mother candidates
and requires knowledge of the primary vertex (PV). The tracks are selected based on their
transverse momentum (pT), track χ

2 per number of degrees of freedom and minimum distance
of closest approach with respect to each reconstructed primary vertex (IP). The secondary
vertex (SV) is selected by making pairs of tracks and measuring their distance of closest
approach with respect to each other (DCA) and the χ2 per number of degrees of freedom
of the reconstructed SV. The mother candidates are selected by requiring they lie within an
invariant mass range (mK−π+), they have a minimum IP χ2 with respect to its selected PV,
a minimum cosine of the angle between the flight direction and mother momentum vector
(DIRA), and pT. Further variables were also studied such as the quality of the separation of
the primary and secondary vertices (the flight distance χ2) and the quality of the track IP.
These variables were found to have little separation power and improving their calculations
will be a task to undertake before the initial sPHENIX data taking. A visual description of
the variables is given in Figure 1.

To ensure the final selection was unbiased, signal and background samples were taken from
events that were not used in the final simulation. The signal events were taken from a simu-
lated sample of minimum bias p+p collisions using Pythia8 which were filtered at the gen-
erator level to ensure each event contained a cc pair. DecayFinder was run on each event
to select D0 → K−π+ decays and required the minimum track pT was greater than 0.16GeV
with a track pseudorapidity (η) between −1.6 ⩽ η ⩽ 1.6. DecayFinder was required to

4The default matching limit is 5%
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Figure 1: Visual description of the kinematic and topological variables used to select the D0

candidates.

trigger on this selection. For all events which passed this check, HFTrackEfficiency was
then run to match the true kaon and pion tracks to a reconstructed track within 5% for px, py
and pz and write these tracks to a new track map. KFParticle was then configured to run
on this new track map to ensure a pure D0 → K−π+ sample. The only selection requirement
in KFParticle was that the K−π+ pair falls within the range 1.70 ⩽ mK−π+ ⩽ 2.00.

The background sample was taken from a simulated sample of minimum bias Au+Au
collisions using HIJING. 10 thousand events were used with no selection other than the
K−π+ pair falls within the range 2.00 ⩽ mK−π+ ⩽ 2.10.

ROOT’s multi-variate analysis toolkit (TMVA) [19] can read in data sets where users
specify variables to use for multivariate analyses. Useful features of this kit is it can au-
tomatically overlay the signal and background distributions of each variable, measure the
variable correlations and show the agreement between training and testing samples. The sig-
nal and background samples were fed into TMVA where the event number that is stamped
by Fun4All is used to separate training and testing samples. The training samples used
exclusively odd numbered events while the testing samples used even numbered events. The
training and testing samples’ invariant mass distributions are shown in Figure 2. 277005
candidates were used for the signal sample (138720 for training) and 884752 were used for
the background sample (449199 for training). The variable comparisons are shown in Fig-
ure 3 while the variable correlations are shown in Figure 4. TMVA was run only using
cuts-based methods, the associated receiver operating characteristic (ROC) plot is shown in
Figure 5. Using TMVA and assuming that there are 10000 background candidates to every
signal candidate, the package predictions an optimal signal efficiency of approximately 2%.

With this information, the baseline cuts to be applied to the minimum bias Au+Au
sample are given in Table 2. Before these cuts, there were 300755 D0 signal candidates from
the p+p simulation and 1782139 background candidates from the Au+Au. After applying
these cuts, there were 39808 D0 signal candidates from the p+p simulation and 978 back-

6



1.7 1.75 1.8 1.85 1.9 1.95 2

]2) [GeV/c+π-m(K

0

2000

4000

6000

8000

10000

)2
C

an
di

da
te

s/
(3

.5
0 

M
eV

/c

1.94 1.96 1.98 2 2.02 2.04 2.06 2.08 2.1

]2) [GeV/c+π-m(K

0

2000

4000

6000

8000

10000

12000

14000

)2
C

an
di

da
te

s/
(1

.7
8 

M
eV

/c

Figure 2: Invariant mass distributions of the signal and background samples used to make
the selection decisions. The signal sample is shown on the left and the background sample
is shown on the right.
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Figure 3: Input variable distributions of the signal (blue, whole) and background (red,
dashed) samples used to make the selection decisions.Variables from top to bottom, left to
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ground candidates from the Au+Au. This gives a 13.24% efficiency on the signal and 0.05%
efficiency on the background selection. It should be noted that the invariant mass range in
Table 2 is slightly larger than what is used in the final fitting (1.70 ⩽mK−π+ ⩽ 2.00). This
is to obtain sufficient background samples on either side of the D0 mean mass to allow for a
machine-learning study.

Variable Cut

min. track IP [ cm ] 0.0025
min. track pT [ GeV ] 0.7
max. track χ2/nDoF 5

max. track-track DCA [ cm ] 0.008
D0 IPχ2 3

D0 pT [ GeV ] 1.5
D0 χ2/nDoF 5
D0 DIRA 0.90

mK−π+ [ GeV ] 1.65 → 2.10

Table 2: Baseline cuts used to select D0 → K−π+ candidates.

5 Models

The modelling of the K−π+ invariant mass distribution is performed using the RooFit
fitting package [20] provide with ROOT.

5.1 Signal

As there is no PID at sPHENIX, it is possible to reconstruct a D0 but invert the mass
hypothesis for both tracks. The two hypotheses will return different values for the mass.
However, if the mass window is sufficiently large, it’s increasingly likely to select the incorrect
combination. Due to this effect, the invariant mass of the K−π+ pair will appear as the
composition of two Gaussian functions, one with a very large width. The PDF describing
the signal shape is

(3)
f(x;µ, σcor−ID, σmis−ID, kcor−ID) = N ·

[
kcor−ID exp

(
−(x − µ)2

2σ2
cor−ID

)
+ (1− kcor−ID) exp

(
−(x − µ)2

2σ2
mis−ID

)]
where µ is the mean value, σcor−ID is the width of the Gaussian describing the candidates with
the correct mass hypothesis, σmis−ID is the width of the Gaussian describing the candidates
with the incorrect mass hypothesis and kcor−ID is the fraction of candidates belonging to the
Gaussian with the correct mass hypothesis. When fitting the signal extracted from the p+p
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baseline, all parameters are left floating. However, when fitting the final distribution kcor−ID

is fixed to the value from the p+p simulation and σmis−ID is scaled from σcor−ID by the ratio
of widths as measured in the p+p simulation to account for the difference in momentum
resolution between p+p and Au+Au events

σAu+Au
mis−ID = σAu+Au

cor−ID

σp+p
mis−ID

σp+p
cor−ID

(4)

The results of the fit to the signal extracted from p+p simulated events are given in Table 3
and Figure 6 respectively.
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Figure 6: Default fit to the K−π+ invariant mass distribution using simulated p+p events
with truth matching.

Parameter Value

µ[MeV] 1862.78± 0.11
σcor−ID[MeV] 12.83± 0.12
kcor−ID [%] 54.62± 0.43
σmis−ID[MeV] 82.89± 1.00

Table 3: Default fit parameters to the D0 → K−π+ p+p signal sample.

5.2 Background

The background is modeled using an exponential function as it was felt this would have a
better handle on the combinatorial background from the Au+Au simulation than a linear
function would. The background PDF is

f(x; k) = N · exp(λx) (5)

where λ is the decay constant.

10



5.2.1 Additional background sources

At this stage, there are no additional background sources modeled. However, there are
several sources that could contribute:

• D0 → K−π+π0 where the diphoton daughters are not used in the reconstruction. The
branching ratio of D0 → K−π+π0 to D0 → K−π+ is approximately 3.5 and would lie
to the lower mass region.

• D+ → K−π+π+ where one of the pions are missed. The fragmentation fraction times
branching ratio of D+ → K−π+π+ to D0 → K−π+ is approximately 1.0 and would
lie to the lower mass region. The decay D+ → K−K+π+, where a kaon is missing is
unlikely to contribute to the background in this study as either the mass loss from the
kaon would be too great or the mis-ID of one kaon track as a pion as well as a missing
track would likely make the channel fall out of the invariant mass window.

• D+
s → K−K+π+ where one of the kaons are missed. The fragmentation fraction times

branching ratio of D+
s → K−K+π+ to D0 → K−π+ is approximately 0.5 and would

lie close to the D0 peak.

• Λ+
c → pK+π+ is unlikely to contribute either due to the mis-ID of one track or the

missing proton, which carries a significant portion of the energy.

The contribution of these background sources to this channel could be studied using
dedicated simulations of these decays where the D0 → K−π+ selection is applied and the
K−π+ mass hpothesis is applied to the selection. The invariant mass distributions would
not follow a predictable shape and so the Kernel method could be applied to model the
shapes [21].

6 Results

The baseline selection in Table 2 was applied to the Au+Au simulation without using
DecayFinder and HFTrackEfficiency as a trigger to allow for a realistic background
contamination. DecayFinder andHFTrackEfficiency were both run alongsideKFParticle
to calculate the acceptance, tracking, and selection efficiencies. The resulting mK−π+ spec-
trum is shown in Figure 7 where there is no apparent D0 mass peak. The baseline cuts were
chosen to be very loose so it was expected that they would need to be tightened at a later
stage. The loose cuts were chosen to allow for a machine learning study which is detailed in
Appendix B.

DecayFinder and HFTrackEfficiency were run requiring that a maximum track
η ⩽ 1.6 and minimum track pT ⩾ 0.16GeV. HFTrackEfficiency also required that
the true value of px, py and pz match to the reconstructed values within 5%. The pT and
η values are right at the periphery of the sPHENIX tracking abilities and only significantly
displaced tracks can meet these requirements or else they become loopers or fall outside of
the tracking acceptance. By using these values, the acceptance and tracking efficiency can be
underestimated by counting decays that could never be reconstructed. Thus, an improvement

11



in calculating the acceptance and tracking efficiency would be to add a recalculation of the
pT and η thresholds based on the position of the secondary vertex. This is outside of the
scope of this study but a second calculation of the tracking efficiency is performed with a
maximum track η ⩽ 0.5 and minimum track pT ⩾ 1.00GeV. Further, the track matching
requirement can reject lower pT tracks where the momentum calculation is less accurate.

Using the loose requirements to accept a decay, the geometric acceptance is calculated
to be 34.5% and the tracking efficiency is calculated to be 7.8%. The geometric acceptance
includes D0 → K−π+ decays that have an associated photon. The energy of these photons
is not known and so it is unknown if these decays could be meaningfully reconstructed if the
energy loss is too great. If all decays with an associated photon are assumed to fall outside
of the invariant mass window, then the acceptance is reduced to 24.3%. Table 4 details
the number of generated decays and how they do or do not fall inside the loose sPHENIX
acceptance. If the tracking requirement is tightened to the values in the previous paragraph,
then the efficiency increases by a factor of 3 to 20.4%. Table 5 also details the number of
decays with an associated photon within the loose cut and how many had all their tracks
reconstructed via the tracking algorithms. A comparison of the tracking efficiency as a 2D
plot of minimum and maximum track pT and the efficiency as a function of the true D0 pT
is given in Figure 8.
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Figure 7: Distribution of the K−π+ invariant mass pairs using simulated Au+Au events
with the baseline selection.

A large volume of the D0 daughter tracks appear to sit at the edge or beyond the
sPHENIX fiducial region where one track has a either large value of |η| or a low pT (or
both). This can be seen in Figure 9 where there is a large concentration of events with a pT
less that 0.2GeV and an |η ⩾ 1.1.

A tighter selection was applied to the data set to extract the D0 peak. The cuts were
chosen by studying the kinematic distributions of signal and background samples after the
baseline selection was applied. To avoid biases, the p+p sample was used for the signal
and the upper and lower mass sidebands from the Au+Au sample that sit outside of the fit
range were used for the background sample. These samples and the corresponding variable
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Figure 8: The tracking efficiency as measured in the Au+Au simulation. A 2D plot of the
tracking efficiency as a function of the minimum track pT (x-axis) and maximum track pT
(y-axis) is shown on the left while the tracking efficiency as a function of the true D0 pT is
shown on the right..

Requirement Count

Generated decays 636070
Generated decays that fail pT 16766
Generated decays that fail η 300839
Generated decays that fail pT and η 98869
Reconstructable decays 219596
Reconstructable decays with an associated γ 65048
Reconstructable decays with an associated π0 0
Reconstructable decays with an associated γ and π0 0
Reconstructable decays with no associated γ no π0 154548
Efficiency [%] 34.5

Table 4: Comparison of the generated number of D0 → K−π+ decays in the Au+Au sim-
ulation to the number of decays that fall in the sPHENIX acceptance of |η|⩽ 1.6 and
pT ⩾ 0.16MeV.

Requirement Count

Decays in acceptance 219596
Decays fully reconstructed 17138
Efficiency [%] 7.8

Table 5: Comparison of the number of D0 → K−π+ decays fully in the sPHENIX acceptance
in the Au+Au simulation to the number of decays that have all track reconstructed.
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Figure 9: 2D distribution of the maximum absolute η value of a track and the minimum
pT of a track. Both of these values come from the truth information and do not necessarily
come from the same track. Only one track needs to fall outside the fiducial range to be
unable to reconstruct a decay.

distributions can be found in Appendix B while the new cuts are listed in Table 6.
Two fits were performed using the models detailed in Section 5 at two different values

of the D0 pT: 2 and 4GeV. The latter cut is determined to be a very tight cut capable of
rejecting a significant fraction of the background and could be achieved at an early stage
of the commissioning period while the tracking calibrations are being studied. The former
cut represents a physics goal of sPHENIX, to reconstruct D0 to a pT of 2GeV or less. The
results of the fit for D0 pT ⩾ 4GeV are given in Table 7 and Figure 10 where the yield was
measured to be 129 ± 20. This is a statistical significance of σ = 6.45. The results of the
fit for D0 pT ⩾ 2GeV are given in Table 8 and Figure 11 where the yield was measured to
be 536 ± 79. This is a statistical significance of σ = 6.78.

Variable Cut

min. track IP [ cm ] 0.008
max. track-track DCA [ cm ] 0.005

D0 pT [ GeV ] 2 or 4
D0 DIRA 0.98

mK−π+ [ GeV ] 1.70 → 2.00

Table 6: Enhanced cuts used to select D0 → K−π+ candidates.

7 Conclusion

This note details a study performed using simulated Au+Au events with the sPHENIX
detector, and tracking and reconstruction algorithms that will be deployed during the com-
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Figure 10: Fit to the K−π+ invariant mass distribution using simulated Au+Au events with
the tighter selection and a D0 pT ⩾ 4GeV.

Parameter Value

µ[MeV] 1867.45± 2.1
σcor−ID[MeV] 12.1± 1.7
λ [MeV−1] -5.6± 1.0
Ncand 383
fD0 [%] 33.7± 5.3

Table 7: Fit results with the increased selection requirements and a D0 pT ⩾ 4GeV.
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Figure 11: Fit to the K−π+ invariant mass distribution using simulated Au+Au events with
the tighter selection and a D0 pT ⩾ 2GeV.
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Parameter Value

µ[MeV] 1866.23± 1.6
σcor−ID[MeV] 10.1± 1.5
λ [MeV−1] -2.80± 0.14
Ncand 8664
fD0 [%] 6.2± 0.9

Table 8: Fit results with the increased selection requirements and a D0 pT ⩾ 2GeV.

missioning period which is due to commence in Spring 2023. Approximately 22 million
minimum-bias events were simulated, corresponding to just over 20 minutes of data taking
at the full RHIC collision rate of 15 kHz. This study is aimed at defining base cuts to be
deployed during the commissioning period where the collision rate is lower and so this sample
corresponds to a longer integrated time than 20 minutes.

By applying the cuts detailed in Tables 2 and 6 and the models described in Section 5,
D0 → K−π+ decays were extracted with a significance larger than 5σ for a mother pT
⩾ 2GeV It is currently recommended that these cuts be applied to the initial sPHENIX
data sample to obtain a sufficient quantity and quality of D0 candidates to validate the
tracking and heavy flavor programs for full physics analyses.

There are several areas where this study could be improved and some of these are de-
tailed in the appendices in this note such as the application of machine learning, improved
background and signal modelling, and the use of statistical techniques to unfold data for
reaching a lower pT region that 2GeV. There are other areas where this study could be
improved that are not discussed in detail of this note. One are is the improvement of the
acceptance and tracking efficeincy calculations. It was mentioned in Section 6 that the effi-
ciency calculations do not account for the position of the secondary vertex and how this can
alter the track η and pT requirements. A module that can calculate the position dependent
requirements would improve the understanding of these efficiencies. Further, the calculated
values of the DCA variables appears to be smaller than would be expected for a particle that
travels around 1mm before decaying. A study will be performed that compares the DCA
values calculated by KFParticle with a typical straight line extrapolation of a track to
the primary vertex to see if there are any discrepancies.

Beyond the additional studies detailed in the appendices, this work could be expanded
easily to study the K+K−π+ spectrum to obtain D+

(s) candidates with little alterations to
the selection beyond the invariant mass window. This study could also be used to serve as
a baseline for a Λ+

c study (which has a shorter lifetime than the D0) and a K0
s study (which

has a longer lifetime than the D0 but a lower pT spectrum).
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Appendices

A Alternative Fit Models

In Figure 6 it can bee seen that the default model does not perfectly describe the data as
it overshoots the mean while the base seems to be shifted in the opposite direction (it over
fits before the mean and under fits after the mean). This implies that simply adjusting the
fit parameters will not help. Alternative fit models are proposed that can better describe
the data. The fits are described only to emphasise the default fit shortcomings. The double
Gaussian model is used in the final fit as the D0 shape is known to be well described by
a single Gaussian. The reason for the asymmetric peak shape is assumed to be due to an
earlier version of the tracking that was run on the p+p simulation compared to the Au+Au
simulation. This earlier version of the tracking had a simpler version of the TPC clustering
which was improved for the Au+Au simulation and was known to affect the momentum
resolution of the tracks.

A.1 Bifurcated Gaussian

The first model used is a bifurcated Gaussian which has different widths on either side of
the mean value. This shape is described by the PDF

f(x;µ, σL, σR) = N ·

exp
(
− (x − µ)2

2σ2
L

)
, for x < µ

exp(− (x − µ)2

2σ2
R

), for x ⩾ µ
(6)

where µ describes the mean of the Gaussian and σ[L/R] describe the Gaussian widths on the
left and right hand side of the mean value.

The model is fit to a subset of the p+p signal sample. This subset has no cuts applied
and uses 38420 signal candidates in the fit. Using a smaller number of events avoids the issue
of over-fitting the distribution but having no selection means the shape will differ from the
final distribution. The fit values and plot are given in Table 9 and Figure 12 respectively. It
can be seen that the alternative fit model better describes the data, however there is still a
prominent bias.

Parameter Value

µ[MeV] 1858.93± 0.28
σcor−ID,L[MeV] 12.02± 0.22
σcor−ID,R[MeV] 14.98± 0.25
kcor−ID [%] 57.73± 0.44
σmis−ID[MeV] 89.21± 1.31

Table 9: Bifurcated Gaussian fit parameters to the D0 → K−π+ p+p signal sample.
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Figure 12: Bifurcated Gaussian fit to the K−π+ invariant mass distribution using simulated
p+p events with truth matching.

A.2 Double Crystal Ball

A second alternative model is proposed to describe the data. This model is a double-sided
Crystal Ball function [22] and consists of a Gaussian core with a polynomial tail. This
tail is capable of describing radiative losses. The double-sided Crystal Ball has this tail on
either side of the Gaussian core unlike the single-sided which only has the polynomial on the
low-mass mass side. The shape is described by the PDF

f(x;αL, nL, αH, nH, µ, σ) = N ·


exp(− (x − µ)2

2σ2 ), for − αL <
x − µ

σ
< −αH

AL · (BL − x − µ
σ

)−nL , for − αL ⩾ x − µ
σ

AH · (BH − x − µ
σ

)−nH , for x − µ
σ

⩾ −αH

(7)

where

A[L/H] =

(
n[L/H]∣∣α[L/H]

∣∣
)n[L/H]

· exp

(
−
∣∣α[L/H]

∣∣2
2

)
(8)

B[L/H] =
n[L/H]∣∣α[L/H]

∣∣ −
∣∣α[L/H]

∣∣ . (9)

The mean and width of the central Gaussian distribution are given by µ and σ respectively
while L and H refer to the parameters defining the low and high mass regions of the distri-
bution. The parameter α[L/H] describes the boundary between the Gaussian and power law
components while n[L/H] describes the order of the power law (it is not necessarily an integer
value).

The model is fit to the same subset of the p+p signal sample. The fit values and plot are
given in Table 10 and Figure 13 respectively. It can be seen that the double Crystal Ball
describes the data well.
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Figure 13: Double Crystal Ball fit to the K−π+ invariant mass distribution using simulated
p+p events with truth matching.

Parameter Value

µ[MeV] 1860.15± 0.12
σcor−ID[MeV] 12.67± 0.15
αL 1.07± 0.03
nL 0.89± 0.20
αH 0.93± 0.03
nH 1.31± 0.30
kDCB, Gauss. core [%] 41.53± 2.86
kcor−ID [%] 87.29± 6.26
σmis−ID[MeV] 97.7± 19.4

Table 10: Double Crystal Ball fit parameters to the D0 → K−π+ p+p signal sample.
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A.3 Kernel density estimated backgrounds

No partially reconstructed backgrounds are modelled in the default fit. However, if one
wishes to model these non-parametric distributions an option would be to use a kernel
density estimation (KDE). As the invariant mass distribution of the events that pass the
selection requirements tend to become non-parametric due to the selection requirements and
the invariant mass substitutions imposed on the sample, then the shape of the PDFs are
extracted using the kernel density estimation method with an adaptive bandwidth [21]. The
use of kernel density estimation to describe non-parametric distributions in invariant masses
was proposed by the D0 collaboration for analysis of the Higgs boson [23] but has been
developed for use in other collaborations.

In a kernel estimation the events of a distribution are substituted for a kernel function
so that the distribution, f̂0(x), can be described as

f̂0(x) =
1

nh

n∑
i=1

K

(
x− ti
h

)
(10)

where ti is the value of event i and h is the bandwidth or smoothing parameter. It has
been suggested [23] that a suitable kernel function for use in describing the invariant mass
distribution would be a Gaussian as it is positive definite and infinitely differentiable.

To avoid issues of function overspill at boundaries, underestimations of the distribution
within regions with low event density, and overestimation within regions of high density then
the bandwidth is allowed to alter on an event-by-event basis which is known as an adaptive
kernel estimation where the per-event bandwidth is given by [24]

hi =
h√
f̂0(x)

. (11)

The PDFs determined by the kernel method were obtained by using DecayFinder and
HFTrackEfficiency to select D+

s → K−K+π+ from the p+p to cc simulation. The new
track map of these decays was then passed to KFParticle where the default selection
given in Table 6 was applied using the D0 → K−π+ decay descriptor. The resulting shape is
given in Figure 14. The expected contamination of this decay with respect to D0 → K−π+

would be estimated from the ratio of the hadronisation fractions, branching fractions and
the number of each decay that pass the selection divided by the total number of each decay
generated,

kmid
chann =

fmid

fchann

Bmid

Bchann

ωmid

εchann
(12)

where fP is the hadronization fraction of the mother particle, BP is the branching fraction of
the decay, ωmid is the misidentification efficiency and εchann is the signal efficiency. As both
the signal and background samples are drawn from the same minimum bias p+p simulation
where all cc events are saved, then the contamination fraction becomes

kmid
chann =

Nsel(D
+
s → K−K+π+)

Nsel(D0 → K−π+)
(13)

where Nsel(X) is the number of decays of X that pass the selection.
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Figure 14: Kernel estimated distribution of D+
s → K−K+π+ in the mK−π+ spectrum using

the tighter D0 → K−π+ selection.
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B Machine Learning Selection

When selecting the baseline cuts, it was known that they would be so loose that the back-
ground would overwhelm the signal. The reason behind this cut was to allow for a machine-
learning study to see if the low-pT reach of D0 could be improved. To this end, signal and
background samples were passed to ROOT’s TMVA machine learning package [19] to train
various algorithms and see if this goal could be achieved. The signal sample was comprised
of the p+p sample with the baseline cuts applied while the background sample was taken
from the upper and lower mass side bands of the Au+Au simulation with the baseline se-
lection applied. The background sample was taken from the ranges 1.65 ⩽mK−π+ < 1.70
and 2.00 <mK−π+ ⩽ 2.10. The samples were split into even and odd samples by their event
numbers. The odd samples were used for training while the even samples were used for test-
ing. All of this was to avoid biases in the final selection by not re-using events. The number
of events used in each sample is given in Table 11 and the invariant mass distributions are
given in Figure 15.

Sample Number of candidates

Signal, training 20082
Signal, testing 19726
Background, training 199228
Background, testing 200662

Table 11: Number of candidates used for training and testing the machine learning algo-
rithms.
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Figure 15: Invariant mass distributions of the signal and background samples used to train
the machine learning algorithms. The preselection given in Table 2 has been applied to both
samples. Each sample consists of events with an odd event number. The signal sample is
shown on the left and the background sample is shown on the right.

Thirteen variables were chosen to train the algorithms: the minimum and maximum DCA
of the selected tracks with respect to their primary vertex in both two and three dimensions,
the minimum and maximum track pT, the minimum and maximum track χ2 per number of
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degrees of freedom, the DCA of the tracks with respect to each other, the D0 pT, the D
0

DIRA, the D0 DCA χ2 with respect to the primary vertex and the D0 χ2 per number of
degrees of freedom. The comparison of the signal and background distributions for these
variables can be seen in Figure 16 and the correlations between variables an be seen in
Figure 17. These variables were used to train six algorithms: two multi-layer perceptrons
(MLP), ROOTs own neural net, a boosted decision tree (BDT), a BDT with gradient boost
and a BDT with de-correlation and adaptive boost. The receiver operating characteristic
(ROC) curve and response of each algorithm with training and testing samples overlaid can
be seen in Figures 18 and 19 respectively.

The ROC curve legend lists the algorithms in order of best performance. Thus, the old
MLP is predicted to give the best performance. The algorithm was applied to the Au+Au
data within the range 1.70 ⩽mK−π+ ⩽ 2.00 and the response of each candidate to each
ML algorithm was calculated. The fit to the invariant mass was then performed using the
baseline cut and two values of the MLP. For an MLP response ⩾ 0.99, the yield was measured
to be 536 ± 74 while for an MLP response ⩾ 0.999, the yield was measured to be 339 ± 48.
The fit to both distributions is given in Figure 20 and the fit results with an algorithm
response ⩾ 0.999 are given in Table 12.

Parameter Value

µ[MeV] 1865.55± 1.5
σcor−ID[MeV] 10.4± 1.4
λ [MeV−1] -6.60± 0.29
Ncand 3139
fD0 [%] 10.8± 1.5

Table 12: Fit results for the ML study with a multi-layer perceptron with an algorithm
response ⩾ 0.999.

While this study was brief, it demonstrates that machine learning algorithms can be
used to extract the D0 → K−π+ decay at sPHENIX. This could be applied to the entire
sPHENIX data set but it is not felt to be suited to the commissioning period where we wish
to pre-select a small subset of tracks that we can quickly reprocess at a later date. The
baseline selection resulted in 15 million D0 candidates from a sample of 21 million minimum
bias events and thus would result in an unnecessarily large data sample to reprocess.
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Figure 16: Input variable distributions of the signal (blue) and background (red) samples
used to train the machine learning algorithms. Variables from top to bottom, left to right:
minimum track IP, min. track pT, max. track χ2 per no. of degrees of freedom, track-track
DCA, D0 pT, D

0 DIRA, D0 IPχ2, D0 χ2 per no. of degrees of freedom.
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Figure 17: Input variable correlation coefficients of the signal (left) and background right)
samples used to train the machine learning algorithms.
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Figure 19: Classifier output distributions for the machine learning algorithms that were
trained. From top to bottom, left to right: the multi-layer perception, a second multi-layer
perceptron, ROOT’s own neural net, a boosted decision tree, a boosted decision tree with
decorrelation and adaptive boost, and a boosted decision tree with gradient boosting.
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Figure 20: Fit to the K−π+ invariant mass distribution using simulated Au+Au events with
the baseline selection. Machine learning algorithms were trained to reject more background
and this fit was performed using a multi-layer perceptron with an algorithm response ⩾ 0.99
(top) and ⩾ 0.999 (bottom).

29



C sWeighting

It is often the case that data distributions are composed of a composite of sources such a D0

signal and combinatorial background. Often we want to look at the distribution from a single
source and removing the other sources can be difficult. One method for doing this is to cut on
variables that have a large separation between sources but this can lead to contamination and
biases in the final distribution due to overlaps. Another method, known as sWeighting [25],
involves maximising a likelihood function for a discriminating variable (such as a candidates’s
mass) where each candidate’s contribution to a specific class is determined by calculating
the likelihood with and without that event then assigning an event probability where the
probabilities of an event belonging to that class are required to sum to one over all classes
in the model. These weights can then be applied to a control variable (such as a particle’s
pT) assuming there is no correlation between the two variables.

To investigate whether sWeights can be used to improve the low pT reach of the sample,
the fit was redone using the baseline selection with an ML response ⩾ 0.999 then the weights
were calculated for each candidate to be a signal or background event. For simplicity, the
second Gaussian that models the mis-ID was removed. The weight for each candidate to come
from a D0 → K−π+ decay was then added to the histogram of the mother’s pT distribution
and compared to the unweighted sample. Of 3149 candidates in the total fit, the yield of
correctly reconstructed D0 was measured to be 209 ± 26. The fit to the invariant mass
distribution is given in Figure 21 and the comparison of the weighted and unweighted pT
distributions is given in Figure 22. From the weighted sample, it appears that we can reach
a pT as low as 1.5GeV which is the baseline cut.
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Figure 21: Fit to the K−π+ invariant mass distribution using simulated Au+Au events with
the baseline selection and an MLP response ⩾ 0.999. The mis-ID’d D0 model was removed
in this fit and the fitter was required to sWeight each candidate.

RooFit has an internal class that is capable of calculating the sWeights so it is a rea-
sonably simple addition to add these weights to an nTuple. It should be noted that there
are some requirements:
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Figure 22: pT distribution of the D0 candidates with sWeighting in red and without sWeighting
in black.

1. You must have a fit value for each component of your fit. This means you can’t have a
fit fraction for the signal and then subtract that from 1 to get the background fraction.

2. You must fit for the yield of each component of the fit, not the fraction. This is because
the log-likelihood minimisation requires a value that is not less than 1.

An example code follows,

stringstream cutStream;

cutStream << "1.7 <= D0_mass && D0_mass <= 2.0";

TCut masscut = cutStream.str().c_str();

TFile* dataFile = new TFile("myInputFile.root");

TTree* dataTree = (TTree*)dataFile->Get("DecayTree");

string datasWeight = inputFile.substr(0, inputFile.size()-5) + "_sWeighted.root";

TFile* sWeightedDataFile = new TFile(datasWeight.c_str(), "RECREATE");

TTree* dataSWTree = dataTree->CopyTree(masscut);

TTree* sWeightedDataTree = dataSWTree->CloneTree(-1);

RooRealVar mass(branch.c_str(), "mass", minMass, maxMass);

RooDataSet dataSet(branch.c_str(), "data", mass, Import(*sWeightedDataTree));

/*

* Signal Model

*/

RooRealVar mean("mean", "mean", 1.865, 1.835, 1.875);

RooRealVar sigma("sigma", "sigma", 0.006, 1e-3, 0.030);

RooGaussian D0("D0", "D0", mass, mean, sigma);

RooRealVar fSig("fSig", "fSig", 0.1*dataSet.numEntries(), 0, 2*dataSet.numEntries());

RooRealVar fBkg("fBkg", "fBkg", 0.9*dataSet.numEntries(), 0, 2*dataSet.numEntries());
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/*

* Background Model

*/

RooRealVar expConst("expConst", "expConst", -10, -1e2, 0.);

RooExponential background("background", "background", mass, expConst);

/*

* Fitting to the data

*/

RooArgList fitModelList(D0, background), fitFracList(fSig, fBkg);

RooAddPdf model("model", "model", fitModelList, fitFracList);

model.fitTo(dataSet);

RooStats::SPlot* sData = new RooStats::SPlot("sData", "An sPlot", dataSet,

&model, RooArgList(fSig, fBkg));

double sig_sw;

TBranch* b_sig_sw = sWeightedDataTree->Branch("sWeight", &sig_sw, "sWeight/D");

std::cout << "Check sWeights:" << std::endl;

std::cout << "Yield of signal is " << fSig.getVal()

<< ". From sWeights it is " << sData->GetYieldFromSWeight("fSig")

<< std::endl;

for (int i = 0; i < dataSet.numEntries(); ++i)

{

if (i < 5)

{

std::cout << "Signal Weight = " << sData->GetSWeight(i,"fSig")

<< ", Background Weight = " << sData->GetSWeight(i,"fBkg")

<< ", Total Weight = " << sData->GetSumOfEventSWeight(i)

<< std::endl;

}

const RooArgSet* row = dataSet.get(i);

sig_sw = (double) row->getRealValue("fSig_sw");

b_sig_sw->Fill();

}

sWeightedDataFile->Write();

sWeightedDataFile->Close();
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