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Abstract

The reconstruction and selection of D0 → K−π+ in simulated Au+Au collisions with
the sPHENIX detector is presented. Approximately 22 million minimum bias events
were generated at

√
sNN = 200GeV using the HIJING event generator, corresponding

to roughly 20 minutes of data taking at a collision rate of 15 kHz.
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1 Introduction

The reconstruction of open-charm hadrons is a key requirement of the sPHENIX experiment1

which will commence data-taking in Spring 2023. As with any new detector, the initial data-2

taking period will be devoted to commissioning the experiment. This involves ensuring the3

correct operation of all subsystems, the tracking, calorimeter calibration and calculation of4

physics objects. Preparations for the latter requirement is the focus of this note. A detailed5

commissioning timeline has been agreed by the collaboration which is publicised within the6

Beam Use Proposal [1]. The timeline is given in Table 1 for completeness.7

Weeks Details

2.0 low rate, 6-28 bunches
2.0 low rate, 111 bunches, MBD L1 timing
1.0 low rate, crossing angle checks
1.0 low rate, calorimeter timing
4.0 medium rate, TPC timing, optimization
2.0 full rate, system test, DAQ throughput

12.0 Total

Table 1: Timeline for sPHENIX commissioning period in 2023, the first year of operation.
Copied from the sPHENIX 2022 beam use proposal [1].

A challenging aspect of the commissioning period will be the reconstruction of D0 →8

K−π+1 as it is both reasonably rare and the decay products often have a transverse mo-9

mentum (pT ) less than 1GeV. This channel is also key to realising the b-physics program10

of sPHENIX as the separation of prompt and non-prompt open-charm decays is used to11

tag probable b-hadrons [2, 3, 4]. The number of D0 → K−π+, ND0→K−π+ , produced is12

proportional to the integrated luminosity, L, and is roughly given by13

ND0→K−π+ ≈ Lσcc̄2NcollfD0BF(D0 → K−π+)ε2accε
2
trackεsel (1)

where σcc̄ is the production cross section for charm-quarks (about 1/60th of the total14

inelastic cross-section [5, 6]), Ncoll is the number of binary collisions, fD0 is the D0 fragmen-15

tation fraction (about 40% [7]), BF(D0 → K−π+) is the D0 → K−π+ branching fraction16

(about 4% [8]), εacc is the geometrical acceptance efficiency (about 23%, see Section 3.2),17

εtrack is the tracking efficiency (about 80%, see Section 3.3) and εsel is the selection effi-18

ciency. The factor of two comes from producing 2 charm quarks which are equally likely to19

go through a D0 → K−π+ decay and the squares on the acceptance and tracking efficiencies20

comes about from both efficiencies applying equally to each daughter track. This means the21

the expected yield of D0 → K−π+ is given by22

ND0→K−π+ ≈ LNcollεsel × 10−5 (2)

1Charge conjugation is implied throughout this note unless otherwise stated.
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The aim of this note is to understand the topological and kinematic variable distributions23

of D0 decays in Au+Au collisions at sPHENIX and hence optimise εsel. This note is intended24

to act as a baseline reference for the initial selection of D0 → K−π+ in the commissioning25

period. Several aspects of the experiment data pipeline will be improved during the commis-26

sioning period as the collaboration sees and understands the initial data, most importantly27

the tracking. It is expected that the momentum resolution will undergo improvements in28

the initial period and this resolution has a direct impact on the D0 resolution. Due to the29

large data volume and need for a fast turnaround on physics object construction, we will30

pre-select tracks that share signatures with a heavy flavor decay (as examples, tracks with31

a large pT or large distance-of-closest approach to the primary vertex) and then save these32

track seeds and clusters to a smaller data file to re-run the track fitting with improved align-33

ment parameters. It is important then to understand what these variables look like and34

select tracks with loose enough cuts to catch tracks that may not have the best resolution35

yet but the cuts need to be tight enough to reject a large portion of the background. The36

reconstruction of D0 then serves as an important indicator that the sPHENIX collaboration37

is ready to produce physics results.38

The note after this introduction is arranged as follows; the general simulation setup of the39

generators and detector, along with the generated statistics is detailed in Section 2, the tools40

developed within sPHENIX to understand the decay topology are described in Section 3,41

the base selections applied to the simulation data set is detailed in Section 4, the models42

used to describe the invariant mass distributions are described in Section 5 and the results43

are presented in Section 6.44

To avoid biases, the signal was modelled using D0 → K−π+ decays simulated in p+p45

collisions using Pythia8 while the background was modelled using HIJING events outside46

of the invariant mass search window. Comparisons of the signal-to-background ratio are47

made between candidates selected using direct cuts and machine-learning methods.48

2 Simulation49

This study used two different data sets. One data set consisted of p+p collisions at
√
s= 200GeV50

using Pythia8 [9] as an event generator. Pythia8 was tuned to approximate the minimum51

bias collision environment at RHIC [10] but, after the initial generation, each event was re-52

quired to have a cc̄ pair produced to enrich the D0 → K−π+ statistics. The RHIC collision53

rate for p+p collisions is almost 10MHz and some of the sPHENIX detectors integrate their54

hits over a longer period that this and hence, there is an out-of-time pileup effect. This effect55

was implemented as part of our simulation. A total to 50 million events were generated in56

this fashion and they were used to model the D0 → K−π+ signal shape and variable distri-57

butions. This was intended to avoid biases in the final selection and fitting by not using the58

same D0 → K−π+ candidates for both selection and testing.59

The second data set consisted of minimum bias Au+Au collisions at
√
sNN = 200GeV60

using HIJING [11]. Unlike the p+p sample, there was no further requirements on the61

generator to enrich the D0 → K−π+ purity. This sample was used for both background62

modelling and for the final test of the selection. The background sample was taken from63

a region outside the invariant mass range to ensure there is no bias in the final selection.64
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Almost 22 million events were generated which corresponds to a little over 20 minutes of65

data taking at the peak RHIC Au+Au collision rate of 15 kHz.66

The detector was simulated using the Geant4 package [12]. The simulation consists67

of the beam pipe and all detectors, except the event plane detector (sEPD) which is not68

used for this study. In the interaction region, the beam pipe consists of a beryllium section69

with an inner radius of 2 cm and a thickness of 762µm. The volume inside the beam pipe70

is simulated as a vacuum. The monolithic active pixel sensor vertex detector (MVTX) is71

simulated after the beam pipe and extends from 2.4 cm to 5.3 cm. It consists of a three72

layer vertexing detector with a timing resolution of approximately 5µs and hence sees the73

out of time pile-up effect. This effect is accounted for by duplicating the hits with a time74

delay in Geant4. The next detector radially is the intermediate tracker (INTT) which75

consists of a two-layer silicon strip detector with a timing resolution capable of resolving the76

10MHz collision rate. The INTT sits between 7.2 cm and 10.3 cm, radially. A compact time77

projection chamber (TPC) sits beyond the INTT up to a radius of 80 cm and provides the78

momentum measurement for tracks in sPHENIX. The TPC integrates over a period of 34µs79

and also sees the out-of-time pileup effect. The final tracking detector is the TPC outer80

tracker (TPOT) which consists of 8 GEM detectors below the TPC in the vertical direction.81

This acts as a final measurement point in the tracking to account for the distortions and drift82

in the TPC tracks. As well as the tracking detectors, there are two hadronic calorimeters83

and an electromagnetic calorimeter in the simulation. As they are not used to identify the84

D0 candidates, they are not described in this note. Between the two hadronic calorimeters,85

there is a 1.5 T superconducting solenoidal magnet which is also simulated. The tracking is86

performed using A Common Tracking Software (ACTS) [13, 14].87

3 Toolkit88

3.1 KFParticle89

The candidate reconstruction was performed by KFParticle, originally designed by the90

CBM collaboration [15] and adapted to be used within the Fun4All framework [16]. The91

internal logic of the package has been largely unchanged since its previous description in the92

sPHENIX framework [17] except for small bug fixes or additional output variables for users.93

The main update since the previous note is the addition of a “decay descriptor” to simplify94

the user interface.95

The decay descriptor is a string that users write to specify the decay topology and is96

parsed by the top interface class before any event processing. If the descriptor can not be97

understood by the parser, a warning will be raised and the module will not be added to the98

node tree although Fun4All will still run. The decay parser checks each particle the user99

specifies against the particle database found in ROOT’s TDatabasePDG to ensure it exists.100

If the particle does not exist, this will be written to the user. Similarly, if the parser cannot101

interpret the charge of a track, the user will also be notified of the offending track. All other102

instances of the parser not understanding the string will be written as a standard warning.103

An example decay descriptor is as follows104

[B+ -> {D0bar -> K^- pi^+} pi^+]cc105
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This is interpreted as a B+ hadron decaying to an intermediate D0 and an isolated106

charged pion. The mother is always written to the left of a -> and intermediate decays107

are always contained within {} braces. The charge of a track is written as either +, - or108

0 directly after a caret (^). If you wish to also search for the charge conjugate decay, the109

entire descriptor must be contained with square braces and appended with cc or CC for110

charge-conjugate. From this, KFParticle knows how many intermediate decays there are,111

how many tracks are in each intermediate state and final state as well as the charges of all112

tracks. It also knows if it needs to bring the intermediate states back to a common vertex113

or associate them to any other final state tracks.114

3.2 DecayFinder115

DecayFinder is a new package that runs over the truth record of an event. It searches for116

decays specified by the user and accepts input ranges for the final state particles pseudorapid-117

ity, η, and pT . It effectively measures the geometrical acceptance of a decay. DecayFinder118

also uses a decay descriptor with the same logic as KFParticle, so users can just repeat the119

string they wrote previously. DecayFinder begins by looking for the HepMC2 record [18]120

on the node tree, if this doesn’t exist then it will fall back to using the Geant4 truth record.121

The tool loops over the truth container to find the required mother and, when this is found,122

the decay products will be analysed. There is an internal list of resonances that will be123

further analysed if seen in the mothers decay chain. For example, a ϕ(1020) resonance often124

decays to two kaons. If a user is looking for two kaons in the final state, then the ϕ(1020) will125

be studied further. This resonance would not automatically be seen by sPHENIX without126

reconstructing the dikaon pair first. If the ϕ(1020) is specified in the decay descriptor, it127

will be removed from the internal resonance list and treated as an integral part of the decay128

chain.129

It is possible to limit the decay volume of some event generators such as Pythia8. If130

this occurs, the HepMC2 record will not contain the full information of the event. In this131

case, DecayFinder can detect that the decay volume was limited and switch to searching132

the Geant4 truth record when this boundary is discovered2. When DecayFinder detects133

a final state track (e±, µ±, π±, K±, p or p̄), it calculates the track’s η and pT and compares134

this to the user specified values3. If all tracks pass the requirement, DecayFinder tags135

the decay as reconstructable. The barcodes, embedding IDs and PDG IDs of all particles136

in a reconstructable decay can be written to the node tree for further analysis. When137

DecayFinder finishes, it can write a report of how many decays were generated, how138

many had at least one track fail the pT requirement or had at least one track fail the η139

requirement or had at least one track fail both the pT and η requirements and finally how140

many decays fell within the required acceptance. DecayFinder is also capable of triggering141

on events that have all particles within the sPHENIX acceptance.142

2This boundary appears as a null pointer when calling a particle’s end vertex in HepMC2
3The default values are pT ⩾ 0.2GeV and |η| ⩽ 1.1
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3.3 HFTrackEfficiency143

HFTrackEfficiency uses the output of DecayFinder to match final state tracks to the144

decay products that DecayFinder claims are all in the required acceptance region. When145

each trackable particle is found in the truth record, the reconstructed track map is iterated146

over and the 3-momentum of the truth and reconstructed objects is compared. If all three147

values match within a specified limit4 then HFTrackEfficiency counts that particle as148

reconstructed. The user can specify that they would like to have the results of the search149

output to an nTuple. This nTuple contains the truth momenta, PID and η for each trackable150

particle as well as the reconstructed momenta of the track, if it exists. There is also a boolean151

flag to say whether that track was or was not reconstructed. The mothers true momenta,152

PID and η are also written to the file along with the reconstructed mass as seen by ACTS,153

assuming all tracks were reconstructed. This files gives a direct look at the tracking efficiency154

for heavy flavor particles.155

As with DecayFinder, HFTrackEfficiency is also capable of triggering when all156

final state particles are reconstructed. As well as this triggering, it can also write the recon-157

structed tracks back to the node tree in a subset of the track map. This is only done when158

all tracks are reconstructed for a decay and so allows users to build a decay without any159

selections which is useful for studying the decays kinematic distributions.160

4 Selection161

The D0 candidates were selected using kinematic and topological variable cuts. The cuts162

are applied to the daughter tracks, secondary vertex and reconstructed mother candidates163

and requires knowledge of the primary vertex (PV). The tracks are selected based on their164

transverse momentum (pT), track χ
2 per number of degrees of freedom and minimum distance165

of closest approach with respect to each reconstructed primary vertex (IP). The secondary166

vertex (SV) is selected by making pairs of tracks and measuring their distance of closest167

approach with respect to each other (DCA) and the χ2 per number of degrees of freedom168

of the reconstructed SV. The mother candidates are selected by requiring they lie within an169

invariant mass range (mK−π+), they have a minimum IP χ2 with respect to its selected PV,170

a minimum cosine of the angle between the flight direction and mother momentum vector171

(DIRA), and pT. Further variables were also studied such as the quality of the separation of172

the primary and secondary vertices (the flight distance χ2) and the quality of the track IP.173

These variables were found to have little separation power and improving their calculations174

will be a task to undertake before the initial sPHENIX data taking. A visual description of175

the variables is given in Figure 1.176

To ensure the final selection was unbiased, signal and background samples were taken from177

events that were not used in the final simulation. The signal events were taken from a simu-178

lated sample of minimum bias p+p collisions using Pythia8 which were filtered at the gen-179

erator level to ensure each event contained a cc pair. DecayFinder was run on each event180

to select D0 → K−π+ decays and required the minimum track pT was greater than 0.16GeV181

with a track pseudorapidity (η) between −1.6 ⩽ η ⩽ 1.6. DecayFinder was required to182

4The default matching limit is 5%
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Figure 1: Visual description of the kinematic and topological variables used to select the D0

candidates.

trigger on this selection. For all events which passed this check, HFTrackEfficiency was183

then run to match the true kaon and pion tracks to a reconstructed track within 5% for px, py184

and pz and write these tracks to a new track map. KFParticle was then configured to run185

on this new track map to ensure a pure D0 → K−π+ sample. The only selection requirement186

in KFParticle was that the K−π+ pair falls within the range 1.70 ⩽ mK−π+ ⩽ 2.00.187

The background sample was taken from a simulated sample of minimum bias Au+Au188

collisions using HIJING. 10 thousand events were used with no selection other than the189

K−π+ pair falls within the range 2.00 ⩽ mK−π+ ⩽ 2.10.190

ROOT’s multi-variate analysis toolkit (TMVA) [19] can read in data sets where users191

specify variables to use for multivariate analyses. Useful features of this kit is it can au-192

tomatically overlay the signal and background distributions of each variable, measure the193

variable correlations and show the agreement between training and testing samples. The sig-194

nal and background samples were fed into TMVA where the event number that is stamped195

by Fun4All is used to separate training and testing samples. The training samples used196

exclusively odd numbered events while the testing samples used even numbered events. The197

training and testing samples’ invariant mass distributions are shown in Figure 2. 277005198

candidates were used for the signal sample (138720 for training) and 884752 were used for199

the background sample (449199 for training). The variable comparisons are shown in Fig-200

ure 3 while the variable correlations are shown in Figure 4. TMVA was run only using201

cuts-based methods, the associated receiver operating characteristic (ROC) plot is shown in202

Figure 5. Using TMVA and assuming that there are 10000 background candidates to every203

signal candidate, the package predictions an optimal signal efficiency of approximately 2%.204

With this information, the baseline cuts to be applied to the minimum bias Au+Au205

sample are given in Table 2. Before these cuts, there were 300755 D0 signal candidates from206

the p+p simulation and 1782139 background candidates from the Au+Au. After applying207

these cuts, there were 39808 D0 signal candidates from the p+p simulation and 978 back-208
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Figure 2: Invariant mass distributions of the signal and background samples used to make
the selection decisions. The signal sample is shown on the left and the background sample
is shown on the right.
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ground candidates from the Au+Au. This gives a 13.24% efficiency on the signal and 0.05%209

efficiency on the background selection. It should be noted that the invariant mass range in210

Table 2 is slightly larger than what is used in the final fitting (1.70 ⩽mK−π+ ⩽ 2.00). This211

is to obtain sufficient background samples on either side of the D0 mean mass to allow for a212

machine-learning study.213

Variable Cut

min. track IP [ cm ] 0.0025
min. track pT [ GeV ] 0.7
max. track χ2/nDoF 5

max. track-track DCA [ cm ] 0.008
D0 IPχ2 3

D0 pT [ GeV ] 1.5
D0 χ2/nDoF 5
D0 DIRA 0.90

mK−π+ [ GeV ] 1.65 → 2.10

Table 2: Baseline cuts used to select D0 → K−π+ candidates.

5 Models214

The modelling of the K−π+ invariant mass distribution is performed using the RooFit215

fitting package [20] provide with ROOT.216

5.1 Signal217

As there is no PID at sPHENIX, it is possible to reconstruct a D0 but invert the mass218

hypothesis for both tracks. The two hypotheses will return different values for the mass.219

However, if the mass window is sufficiently large, it’s increasingly likely to select the incorrect220

combination. Due to this effect, the invariant mass of the K−π+ pair will appear as the221

composition of two Gaussian functions, one with a very large width. The PDF describing222

the signal shape is223

(3)
f(x;µ, σcor−ID, σmis−ID, kcor−ID) = N ·

[
kcor−ID exp

(
−(x − µ)2

2σ2
cor−ID

)
+ (1− kcor−ID) exp

(
−(x − µ)2

2σ2
mis−ID

)]
where µ is the mean value, σcor−ID is the width of the Gaussian describing the candidates224

with the correct mass hypothesis, σmis−ID is the width of the Gaussian describing the candi-225

dates with the incorrect mass hypothesis and kcor−ID is the fraction of candidates belonging226

to the Gaussian with the correct mass hypothesis. When fitting the signal extracted from227
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the p+p baseline, all parameters are left floating. However, when fitting the final distribu-228

tion kcor−ID is fixed to the value from the p+p simulation and σmis−ID is scaled from σcor−ID229

by the ratio of widths as measured in the p+p simulation to account for the difference in230

momentum resolution between p+p and Au+Au events231

σAu+Au
mis−ID = σAu+Au

cor−ID

σp+p
mis−ID

σp+p
cor−ID

(4)

The results of the fit to the signal extracted from p+p simulated events are given in232

Table 3 and Figure 6 respectively.
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Figure 6: Default fit to the K−π+ invariant mass distribution using simulated p+p events
with truth matching.

233

Parameter Value

µ[MeV] 1862.78± 0.11
σcor−ID[MeV] 12.83± 0.12
kcor−ID [%] 54.62± 0.43
σmis−ID[MeV] 82.89± 1.00

Table 3: Default fit parameters to the D0 → K−π+ p+p signal sample.

5.2 Background234

The background is modeled using an exponential function as it was felt this would have a235

better handle on the combinatorial background from the Au+Au simulation than a linear236

function would. The background PDF is237

f(x; k) = N · exp(λx) (5)
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where λ is the decay constant.238

5.2.1 Additional background sources239

At this stage, there are no additional background sources modeled. However, there are240

several sources that could contribute:241

• D0 → K−π+π0 where the diphoton daughters are not used in the reconstruction. The242

branching ratio of D0 → K−π+π0 to D0 → K−π+ is approximately 3.5 and would lie243

to the lower mass region.244

• D+ → K−π+π+ where one of the pions are missed. The fragmentation fraction times245

branching ratio of D+ → K−π+π+ to D0 → K−π+ is approximately 1.0 and would246

lie to the lower mass region. The decay D+ → K−K+π+, where a kaon is missing is247

unlikely to contribute to the background in this study as either the mass loss from the248

kaon would be too great or the mis-ID of one kaon track as a pion as well as a missing249

track would likely make the channel fall out of the invariant mass window.250

• D+
s → K−K+π+ where one of the kaons are missed. The fragmentation fraction times251

branching ratio of D+
s → K−K+π+ to D0 → K−π+ is approximately 0.5 and would252

lie close to the D0 peak.253

• Λ+
c → pK+π+ is unlikely to contribute either due to the mis-ID of one track or the254

missing proton, which carries a significant portion of the energy.255

The contribution of these background sources to this channel could be studied using256

dedicated simulations of these decays where the D0 → K−π+ selection is applied and the257

K−π+ mass hpothesis is applied to the selection. The invariant mass distributions would258

not follow a predictable shape and so the Kernel method could be applied to model the259

shapes [21].260

6 Results261

The baseline selection in Table 2 was applied to the Au+Au simulation without using262

DecayFinder and HFTrackEfficiency as a trigger to allow for a realistic background263

contamination. DecayFinder andHFTrackEfficiency were both run alongsideKFParticle264

to calculate the acceptance, tracking, and selection efficiencies. The resulting mK−π+ spec-265

trum is shown in Figure 7 where there is no apparent D0 mass peak. The baseline cuts were266

chosen to be very loose so it was expected that they would need to be tightened at a later267

stage. The loose cuts were chosen to allow for a machine learning study which is detailed in268

Appendix B.269

DecayFinder and HFTrackEfficiency were run requiring that a maximum track270

η ⩽ 1.6 and minimum track pT ⩾ 0.16GeV. HFTrackEfficiency also required that271

the true value of px, py and pz match to the reconstructed values within 5%. The pT and272

η values are right at the periphery of the sPHENIX tracking abilities and only significantly273

displaced tracks can meet these requirements or else they become loopers or fall outside of274

11



the tracking acceptance. By using these values, the acceptance and tracking efficiency can be275

underestimated by counting decays that could never be reconstructed. Thus, an improvement276

in calculating the acceptance and tracking efficiency would be to add a recalculation of the277

pT and η thresholds based on the position of the secondary vertex. This is outside of the278

scope of this study but a second calculation of the tracking efficiency is performed with a279

maximum track η ⩽ 0.5 and minimum track pT ⩾ 1.00GeV. Further, the track matching280

requirement can reject lower pT tracks where the momentum calculation is less accurate.281

Using the loose requirements to accept a decay, the geometric acceptance is calculated282

to be 34.5% and the tracking efficiency is calculated to be 7.8%. The geometric acceptance283

includes D0 → K−π+ decays that have an associated photon. The energy of these photons284

is not known and so it is unknown if these decays could be meaningfully reconstructed if the285

energy loss is too great. If all decays with an associated photon are assumed to fall outside286

of the invariant mass window, then the acceptance is reduced to 24.3%. Table 4 details287

the number of generated decays and how they do or do not fall inside the loose sPHENIX288

acceptance. If the tracking requirement is tightened to the values in the previous paragraph,289

then the efficiency increases by a factor of 3 to 20.4%. Table 5 also details the number of290

decays with an associated photon within the loose cut and how many had all their tracks291

reconstructed via the tracking algorithms. A comparison of the tracking efficiency as a 2D292

plot of minimum and maximum track pT and the efficiency as a function of the true D0 pT293

is given in Figure 8.294
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Figure 7: Distribution of the K−π+ invariant mass pairs using simulated Au+Au events
with the baseline selection.

A large volume of the D0 daughter tracks appear to sit at the edge or beyond the295

sPHENIX fiducial region where one track has a either large value of |η| or a low pT (or296

both). This can be seen in Figure 9 where there is a large concentration of events with a pT297

less that 0.2GeV and an |η ⩾ 1.1.298

A tighter selection was applied to the data set to extract the D0 peak. The cuts were299

chosen by studying the kinematic distributions of signal and background samples after the300

baseline selection was applied. To avoid biases, the p+p sample was used for the signal301
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Figure 8: The tracking efficiency as measured in the Au+Au simulation. A 2D plot of the
tracking efficiency as a function of the minimum track pT (x-axis) and maximum track pT
(y-axis) is shown on the left while the tracking efficiency as a function of the true D0 pT is
shown on the right..

Requirement Count

Generated decays 636070
Generated decays that fail pT 16766
Generated decays that fail η 300839
Generated decays that fail pT and η 98869
Reconstructable decays 219596
Reconstructable decays with an associated γ 65048
Reconstructable decays with an associated π0 0
Reconstructable decays with an associated γ and π0 0
Reconstructable decays with no associated γ no π0 154548
Efficiency [%] 34.5

Table 4: Comparison of the generated number of D0 → K−π+ decays in the Au+Au sim-
ulation to the number of decays that fall in the sPHENIX acceptance of |η|⩽ 1.6 and
pT ⩾ 0.16MeV.

Requirement Count

Decays in acceptance 219596
Decays fully reconstructed 17138
Efficiency [%] 7.8

Table 5: Comparison of the number of D0 → K−π+ decays fully in the sPHENIX acceptance
in the Au+Au simulation to the number of decays that have all track reconstructed.
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Figure 9: 2D distribution of the maximum absolute η value of a track and the minimum
pT of a track. Both of these values come from the truth information and do not necessarily
come from the same track. Only one track needs to fall outside the fiducial range to be
unable to reconstruct a decay.

and the upper and lower mass sidebands from the Au+Au sample that sit outside of the fit302

range were used for the background sample. These samples and the corresponding variable303

distributions can be found in Appendix B while the new cuts are listed in Table 6.304

Two fits were performed using the models detailed in Section 5 at two different values305

of the D0 pT: 2 and 4GeV. The latter cut is determined to be a very tight cut capable of306

rejecting a significant fraction of the background and could be achieved at an early stage307

of the commissioning period while the tracking calibrations are being studied. The former308

cut represents a physics goal of sPHENIX, to reconstruct D0 to a pT of 2GeV or less. The309

results of the fit for D0 pT ⩾ 4GeV are given in Table 7 and Figure 10 where the yield was310

measured to be 129 ± 20. This is a statistical significance of σ = 6.45. The results of the311

fit for D0 pT ⩾ 2GeV are given in Table 8 and Figure 11 where the yield was measured to312

be 536 ± 79. This is a statistical significance of σ = 6.78.313

Variable Cut

min. track IP [ cm ] 0.008
max. track-track DCA [ cm ] 0.005

D0 pT [ GeV ] 2 or 4
D0 DIRA 0.98

mK−π+ [ GeV ] 1.70 → 2.00

Table 6: Enhanced cuts used to select D0 → K−π+ candidates.
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Figure 10: Fit to the K−π+ invariant mass distribution using simulated Au+Au events with
the tighter selection and a D0 pT ⩾ 4GeV.

Parameter Value

µ[MeV] 1867.45± 2.1
σcor−ID[MeV] 12.1± 1.7
λ [MeV−1] -5.6± 1.0
Ncand 383
fD0 [%] 33.7± 5.3

Table 7: Fit results with the increased selection requirements and a D0 pT ⩾ 4GeV.
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Figure 11: Fit to the K−π+ invariant mass distribution using simulated Au+Au events with
the tighter selection and a D0 pT ⩾ 2GeV.
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Parameter Value

µ[MeV] 1866.23± 1.6
σcor−ID[MeV] 10.1± 1.5
λ [MeV−1] -2.80± 0.14
Ncand 8664
fD0 [%] 6.2± 0.9

Table 8: Fit results with the increased selection requirements and a D0 pT ⩾ 2GeV.

7 Conclusion314

This note details a study performed using simulated Au+Au events with the sPHENIX315

detector, and tracking and reconstruction algorithms that will be deployed during the com-316

missioning period which is due to commence in Spring 2023. Approximately 22 million317

minimum-bias events were simulated, corresponding to just over 20 minutes of data taking318

at the full RHIC collision rate of 15 kHz. This study is aimed at defining base cuts to be319

deployed during the commissioning period where the collision rate is lower and so this sample320

corresponds to a longer integrated time than 20 minutes.321

By applying the cuts detailed in Tables 2 and 6 and the models described in Section 5,322

D0 → K−π+ decays were extracted with a significance larger than 5σ for a mother pT323

⩾ 2GeV It is currently recommended that these cuts be applied to the initial sPHENIX324

data sample to obtain a sufficient quantity and quality of D0 candidates to validate the325

tracking and heavy flavor programs for full physics analyses.326

There are several areas where this study could be improved and some of these are de-327

tailed in the appendices in this note such as the application of machine learning, improved328

background and signal modelling, and the use of statistical techniques to unfold data for329

reaching a lower pT region that 2GeV. There are other areas where this study could be330

improved that are not discussed in detail of this note. One are is the improvement of the331

acceptance and tracking efficeincy calculations. It was mentioned in Section 6 that the effi-332

ciency calculations do not account for the position of the secondary vertex and how this can333

alter the track η and pT requirements. A module that can calculate the position dependent334

requirements would improve the understanding of these efficiencies. Further, the calculated335

values of the DCA variables appears to be smaller than would be expected for a particle that336

travels around 1mm before decaying. A study will be performed that compares the DCA337

values calculated by KFParticle with a typical straight line extrapolation of a track to338

the primary vertex to see if there are any discrepancies.339

Beyond the additional studies detailed in the appendices, this work could be expanded340

easily to study the K+K−π+ spectrum to obtain D+
(s) candidates with little alterations to341

the selection beyond the invariant mass window. This study could also be used to serve as342

a baseline for a Λ+
c study (which has a shorter lifetime than the D0) and a K0

s study (which343

has a longer lifetime than the D0 but a lower pT spectrum).344
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Appendices403

A Alternative Fit Models404

In Figure 6 it can bee seen that the default model does not perfectly describe the data as405

it overshoots the mean while the base seems to be shifted in the opposite direction (it over406

fits before the mean and under fits after the mean). This implies that simply adjusting the407

fit parameters will not help. Alternative fit models are proposed that can better describe408

the data. The fits are described only to emphasise the default fit shortcomings. The double409

Gaussian model is used in the final fit as the D0 shape is known to be well described by410

a single Gaussian. The reason for the asymmetric peak shape is assumed to be due to an411

earlier version of the tracking that was run on the p+p simulation compared to the Au+Au412

simulation. This earlier version of the tracking had a simpler version of the TPC clustering413

which was improved for the Au+Au simulation and was known to affect the momentum414

resolution of the tracks.415

A.1 Bifurcated Gaussian416

The first model used is a bifurcated Gaussian which has different widths on either side of417

the mean value. This shape is described by the PDF418

f(x;µ, σL, σR) = N ·

exp
(
− (x − µ)2

2σ2
L

)
, for x < µ

exp(− (x − µ)2

2σ2
R

), for x ⩾ µ
(6)

where µ describes the mean of the Gaussian and σ[L/R] describe the Gaussian widths on the419

left and right hand side of the mean value.420

The model is fit to a subset of the p+p signal sample. This subset has no cuts applied421

and uses 38420 signal candidates in the fit. Using a smaller number of events avoids the issue422

of over-fitting the distribution but having no selection means the shape will differ from the423

final distribution. The fit values and plot are given in Table 9 and Figure 12 respectively. It424

can be seen that the alternative fit model better describes the data, however there is still a425

prominent bias.426

Parameter Value

µ[MeV] 1858.93± 0.28
σcor−ID,L[MeV] 12.02± 0.22
σcor−ID,R[MeV] 14.98± 0.25
kcor−ID [%] 57.73± 0.44
σmis−ID[MeV] 89.21± 1.31

Table 9: Bifurcated Gaussian fit parameters to the D0 → K−π+ p+p signal sample.
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Figure 12: Bifurcated Gaussian fit to the K−π+ invariant mass distribution using simulated
p+p events with truth matching.

A.2 Double Crystal Ball427

A second alternative model is proposed to describe the data. This model is a double-sided428

Crystal Ball function [22] and consists of a Gaussian core with a polynomial tail. This429

tail is capable of describing radiative losses. The double-sided Crystal Ball has this tail on430

either side of the Gaussian core unlike the single-sided which only has the polynomial on the431

low-mass mass side. The shape is described by the PDF432

f(x;αL, nL, αH, nH, µ, σ) = N ·


exp(− (x − µ)2

2σ2 ), for − αL <
x − µ

σ
< −αH

AL · (BL − x − µ
σ

)−nL , for − αL ⩾ x − µ
σ

AH · (BH − x − µ
σ

)−nH , for x − µ
σ

⩾ −αH

(7)

where433

A[L/H] =

(
n[L/H]∣∣α[L/H]

∣∣
)n[L/H]

· exp

(
−
∣∣α[L/H]

∣∣2
2

)
(8)

B[L/H] =
n[L/H]∣∣α[L/H]

∣∣ −
∣∣α[L/H]

∣∣ . (9)

The mean and width of the central Gaussian distribution are given by µ and σ respec-434

tively while L and H refer to the parameters defining the low and high mass regions of the435

distribution. The parameter α[L/H] describes the boundary between the Gaussian and power436

law components while n[L/H] describes the order of the power law (it is not necessarily an437

integer value).438

The model is fit to the same subset of the p+p signal sample. The fit values and plot are439

given in Table 10 and Figure 13 respectively. It can be seen that the double Crystal Ball440

describes the data well.441
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Figure 13: Double Crystal Ball fit to the K−π+ invariant mass distribution using simulated
p+p events with truth matching.

Parameter Value

µ[MeV] 1860.15± 0.12
σcor−ID[MeV] 12.67± 0.15
αL 1.07± 0.03
nL 0.89± 0.20
αH 0.93± 0.03
nH 1.31± 0.30
kDCB, Gauss. core [%] 41.53± 2.86
kcor−ID [%] 87.29± 6.26
σmis−ID[MeV] 97.7± 19.4

Table 10: Double Crystal Ball fit parameters to the D0 → K−π+ p+p signal sample.
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A.3 Kernel density estimated backgrounds442

No partially reconstructed backgrounds are modelled in the default fit. However, if one443

wishes to model these non-parametric distributions an option would be to use a kernel444

density estimation (KDE). As the invariant mass distribution of the events that pass the445

selection requirements tend to become non-parametric due to the selection requirements and446

the invariant mass substitutions imposed on the sample, then the shape of the PDFs are447

extracted using the kernel density estimation method with an adaptive bandwidth [21]. The448

use of kernel density estimation to describe non-parametric distributions in invariant masses449

was proposed by the D0 collaboration for analysis of the Higgs boson [23] but has been450

developed for use in other collaborations.451

In a kernel estimation the events of a distribution are substituted for a kernel function452

so that the distribution, f̂0(x), can be described as453

f̂0(x) =
1

nh

n∑
i=1

K

(
x− ti
h

)
(10)

where ti is the value of event i and h is the bandwidth or smoothing parameter. It has454

been suggested [23] that a suitable kernel function for use in describing the invariant mass455

distribution would be a Gaussian as it is positive definite and infinitely differentiable.456

To avoid issues of function overspill at boundaries, underestimations of the distribution457

within regions with low event density, and overestimation within regions of high density then458

the bandwidth is allowed to alter on an event-by-event basis which is known as an adaptive459

kernel estimation where the per-event bandwidth is given by [24]460

hi =
h√
f̂0(x)

. (11)

The PDFs determined by the kernel method were obtained by using DecayFinder and461

HFTrackEfficiency to select D+
s → K−K+π+ from the p+p to cc simulation. The new462

track map of these decays was then passed to KFParticle where the default selection463

given in Table 6 was applied using the D0 → K−π+ decay descriptor. The resulting shape is464

given in Figure 14. The expected contamination of this decay with respect to D0 → K−π+
465

would be estimated from the ratio of the hadronisation fractions, branching fractions and466

the number of each decay that pass the selection divided by the total number of each decay467

generated,468

kmid
chann =

fmid

fchann

Bmid

Bchann

ωmid

εchann
(12)

where fP is the hadronization fraction of the mother particle, BP is the branching fraction469

of the decay, ωmid is the misidentification efficiency and εchann is the signal efficiency. As both470

the signal and background samples are drawn from the same minimum bias p+p simulation471

where all cc events are saved, then the contamination fraction becomes472

kmid
chann =

Nsel(D
+
s → K−K+π+)

Nsel(D0 → K−π+)
(13)
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where Nsel(X) is the number of decays of X that pass the selection.473
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Figure 14: Kernel estimated distribution of D+
s → K−K+π+ in the mK−π+ spectrum using

the tighter D0 → K−π+ selection.

23



B Machine Learning Selection474

When selecting the baseline cuts, it was known that they would be so loose that the back-475

ground would overwhelm the signal. The reason behind this cut was to allow for a machine-476

learning study to see if the low-pT reach of D0 could be improved. To this end, signal and477

background samples were passed to ROOT’s TMVA machine learning package [19] to train478

various algorithms and see if this goal could be achieved. The signal sample was comprised479

of the p+p sample with the baseline cuts applied while the background sample was taken480

from the upper and lower mass side bands of the Au+Au simulation with the baseline se-481

lection applied. The background sample was taken from the ranges 1.65 ⩽mK−π+ < 1.70482

and 2.00 <mK−π+ ⩽ 2.10. The samples were split into even and odd samples by their event483

numbers. The odd samples were used for training while the even samples were used for test-484

ing. All of this was to avoid biases in the final selection by not re-using events. The number485

of events used in each sample is given in Table 11 and the invariant mass distributions are486

given in Figure 15.487

Sample Number of candidates

Signal, training 20082
Signal, testing 19726
Background, training 199228
Background, testing 200662

Table 11: Number of candidates used for training and testing the machine learning algo-
rithms.
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Figure 15: Invariant mass distributions of the signal and background samples used to train
the machine learning algorithms. The preselection given in Table 2 has been applied to both
samples. Each sample consists of events with an odd event number. The signal sample is
shown on the left and the background sample is shown on the right.

Thirteen variables were chosen to train the algorithms: the minimum and maximum DCA488

of the selected tracks with respect to their primary vertex in both two and three dimensions,489

the minimum and maximum track pT, the minimum and maximum track χ2 per number of490
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degrees of freedom, the DCA of the tracks with respect to each other, the D0 pT, the D
0

491

DIRA, the D0 DCA χ2 with respect to the primary vertex and the D0 χ2 per number of492

degrees of freedom. The comparison of the signal and background distributions for these493

variables can be seen in Figure 16 and the correlations between variables an be seen in494

Figure 17. These variables were used to train six algorithms: two multi-layer perceptrons495

(MLP), ROOTs own neural net, a boosted decision tree (BDT), a BDT with gradient boost496

and a BDT with de-correlation and adaptive boost. The receiver operating characteristic497

(ROC) curve and response of each algorithm with training and testing samples overlaid can498

be seen in Figures 18 and 19 respectively.499

The ROC curve legend lists the algorithms in order of best performance. Thus, the old500

MLP is predicted to give the best performance. The algorithm was applied to the Au+Au501

data within the range 1.70 ⩽mK−π+ ⩽ 2.00 and the response of each candidate to each502

ML algorithm was calculated. The fit to the invariant mass was then performed using the503

baseline cut and two values of the MLP. For an MLP response ⩾ 0.99, the yield was measured504

to be 536 ± 74 while for an MLP response ⩾ 0.999, the yield was measured to be 339 ± 48.505

The fit to both distributions is given in Figure 20 and the fit results with an algorithm506

response ⩾ 0.999 are given in Table 12.507

Parameter Value

µ[MeV] 1865.55± 1.5
σcor−ID[MeV] 10.4± 1.4
λ [MeV−1] -6.60± 0.29
Ncand 3139
fD0 [%] 10.8± 1.5

Table 12: Fit results for the ML study with a multi-layer perceptron with an algorithm
response ⩾ 0.999.

While this study was brief, it demonstrates that machine learning algorithms can be508

used to extract the D0 → K−π+ decay at sPHENIX. This could be applied to the entire509

sPHENIX data set but it is not felt to be suited to the commissioning period where we wish510

to pre-select a small subset of tracks that we can quickly reprocess at a later date. The511

baseline selection resulted in 15 million D0 candidates from a sample of 21 million minimum512

bias events and thus would result in an unnecessarily large data sample to reprocess.513
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Figure 16: Input variable distributions of the signal (blue) and background (red) samples
used to train the machine learning algorithms. Variables from top to bottom, left to right:
minimum track IP, min. track pT, max. track χ2 per no. of degrees of freedom, track-track
DCA, D0 pT, D

0 DIRA, D0 IPχ2, D0 χ2 per no. of degrees of freedom.
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Figure 17: Input variable correlation coefficients of the signal (left) and background right)
samples used to train the machine learning algorithms.
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Figure 19: Classifier output distributions for the machine learning algorithms that were
trained. From top to bottom, left to right: the multi-layer perception, a second multi-layer
perceptron, ROOT’s own neural net, a boosted decision tree, a boosted decision tree with
decorrelation and adaptive boost, and a boosted decision tree with gradient boosting.
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Figure 20: Fit to the K−π+ invariant mass distribution using simulated Au+Au events with
the baseline selection. Machine learning algorithms were trained to reject more background
and this fit was performed using a multi-layer perceptron with an algorithm response ⩾ 0.99
(top) and ⩾ 0.999 (bottom).
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C sWeighting514

It is often the case that data distributions are composed of a composite of sources such a D0
515

signal and combinatorial background. Often we want to look at the distribution from a single516

source and removing the other sources can be difficult. One method for doing this is to cut on517

variables that have a large separation between sources but this can lead to contamination and518

biases in the final distribution due to overlaps. Another method, known as sWeighting [25],519

involves maximising a likelihood function for a discriminating variable (such as a candidates’s520

mass) where each candidate’s contribution to a specific class is determined by calculating521

the likelihood with and without that event then assigning an event probability where the522

probabilities of an event belonging to that class are required to sum to one over all classes523

in the model. These weights can then be applied to a control variable (such as a particle’s524

pT) assuming there is no correlation between the two variables.525

To investigate whether sWeights can be used to improve the low pT reach of the sample,526

the fit was redone using the baseline selection with an ML response ⩾ 0.999 then the weights527

were calculated for each candidate to be a signal or background event. For simplicity, the528

second Gaussian that models the mis-ID was removed. The weight for each candidate to come529

from a D0 → K−π+ decay was then added to the histogram of the mother’s pT distribution530

and compared to the unweighted sample. Of 3149 candidates in the total fit, the yield of531

correctly reconstructed D0 was measured to be 209 ± 26. The fit to the invariant mass532

distribution is given in Figure 21 and the comparison of the weighted and unweighted pT533

distributions is given in Figure 22. From the weighted sample, it appears that we can reach534

a pT as low as 1.5GeV which is the baseline cut.535
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Figure 21: Fit to the K−π+ invariant mass distribution using simulated Au+Au events with
the baseline selection and an MLP response ⩾ 0.999. The mis-ID’d D0 model was removed
in this fit and the fitter was required to sWeight each candidate.

RooFit has an internal class that is capable of calculating the sWeights so it is a rea-536

sonably simple addition to add these weights to an nTuple. It should be noted that there537

are some requirements:538
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Figure 22: pT distribution of the D0 candidates with sWeighting in red and without sWeighting
in black.

1. You must have a fit value for each component of your fit. This means you can’t have a539

fit fraction for the signal and then subtract that from 1 to get the background fraction.540

2. You must fit for the yield of each component of the fit, not the fraction. This is because541

the log-likelihood minimisation requires a value that is not less than 1.542

An example code follows,543

stringstream cutStream;

cutStream << "1.7 <= D0_mass && D0_mass <= 2.0";

TCut masscut = cutStream.str().c_str();

TFile* dataFile = new TFile("myInputFile.root");

TTree* dataTree = (TTree*)dataFile->Get("DecayTree");

string datasWeight = inputFile.substr(0, inputFile.size()-5) + "_sWeighted.root";

TFile* sWeightedDataFile = new TFile(datasWeight.c_str(), "RECREATE");

TTree* dataSWTree = dataTree->CopyTree(masscut);

TTree* sWeightedDataTree = dataSWTree->CloneTree(-1);

RooRealVar mass(branch.c_str(), "mass", minMass, maxMass);

RooDataSet dataSet(branch.c_str(), "data", mass, Import(*sWeightedDataTree));

/*

* Signal Model

*/

RooRealVar mean("mean", "mean", 1.865, 1.835, 1.875);

RooRealVar sigma("sigma", "sigma", 0.006, 1e-3, 0.030);

RooGaussian D0("D0", "D0", mass, mean, sigma);

RooRealVar fSig("fSig", "fSig", 0.1*dataSet.numEntries(), 0, 2*dataSet.numEntries());

RooRealVar fBkg("fBkg", "fBkg", 0.9*dataSet.numEntries(), 0, 2*dataSet.numEntries());

31



/*

* Background Model

*/

RooRealVar expConst("expConst", "expConst", -10, -1e2, 0.);

RooExponential background("background", "background", mass, expConst);

/*

* Fitting to the data

*/

RooArgList fitModelList(D0, background), fitFracList(fSig, fBkg);

RooAddPdf model("model", "model", fitModelList, fitFracList);

model.fitTo(dataSet);

RooStats::SPlot* sData = new RooStats::SPlot("sData", "An sPlot", dataSet,

&model, RooArgList(fSig, fBkg));

double sig_sw;

TBranch* b_sig_sw = sWeightedDataTree->Branch("sWeight", &sig_sw, "sWeight/D");

std::cout << "Check sWeights:" << std::endl;

std::cout << "Yield of signal is " << fSig.getVal()

<< ". From sWeights it is " << sData->GetYieldFromSWeight("fSig")

<< std::endl;

for (int i = 0; i < dataSet.numEntries(); ++i)

{

if (i < 5)

{

std::cout << "Signal Weight = " << sData->GetSWeight(i,"fSig")

<< ", Background Weight = " << sData->GetSWeight(i,"fBkg")

<< ", Total Weight = " << sData->GetSumOfEventSWeight(i)

<< std::endl;

}

const RooArgSet* row = dataSet.get(i);

sig_sw = (double) row->getRealValue("fSig_sw");

b_sig_sw->Fill();

}

sWeightedDataFile->Write();

sWeightedDataFile->Close();
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