

sPHENIX Internal 200 GeV AuAu 2024-10-12, Run 54469, Event #48 TPC HV: (GEMs – 3.31 kV, CM – 43.3 kV), 2 mrad crossing angle.

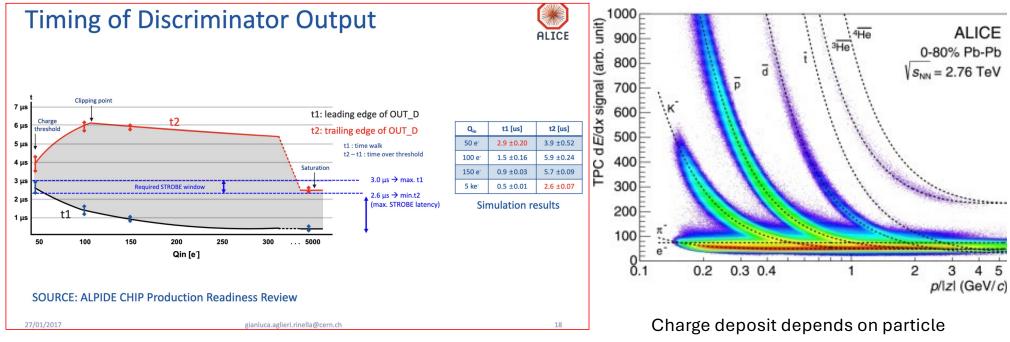
Last night – why were there so few auto-recoveries?

Autorecover	ies			
L0.00 OK	ΟΚ ΟΚ ΟΚΟΚ ΟΚ ΟΚΟΚ ΟΚ ΟΚΟΚ ΟΚ	ок ок ок ок о	ĸ	
L0_01 OK		ок ок о		ок ок ок ок
L0_02 OK	ок ок ок ок ок ок ок ок	ок ок о	к і і і і і і	ок ок ок ок
L0_03 OK	ок ок ок ок ок ок ок ок окок	ококок ок ок о	ĸ	ок окок ок ок ок ок ок
L0_04 OK	ОКОК ОКОКОК ОКОКОКОКОК	ок окок окок	ОК	ок ококок ок окок
L0_05 OK	ок ок ок ок ок ок	οκ οκ οκ οκοκοκ	ок	окок ок окок ок
L0_06 OK	Ο ΚΟ		кок	ок ок ок ок ок ок ок ок ок
L0_07 OK	ок	ок ок ок	K 1 1 1 1 1 1	
L0_08 OK	ОК ОК ОК ОК ОК ОК ОК	ок ок ок о	K I IIII	ок ок ок ок
L0_09 OK	ок ок ок ок ок ок ок	ок ок о		ок ок ок
L0_10 OK	ОК ОК ОК ОК ОК ОК ОК	ок ок о	к	ок ок ок
L0_11 OK	ОК ОК ОК ОК ОК ОК ОК	ок ок о	ĸ	ок ок ок ок
L1_00 OK	ОК ОК ОК ОК ОКОК ОК ОК ОК ОК	ок ок ок о	K I IIII	ΟΚ ΟΚ ΟΚΟΚ ΟΚ ΟΚ ΟΚ ΟΚ ΟΚ
L1_01 OK		ок ок о	ĸ	ококок ок ок
L1_02 OK		ок ок о		ок ок ок
L1_03 OK	ок ок ок ок ок ок ок ок ок	ок ок о		окококок ококок
L1_04 OK		ок ок о		ок ок ок ок
L1_05 OK		ок ок о		ок о
L1_06 OK		ококок ок ок		ОК ОК ОК ОК ОК ОК ОК ОК
L1_07 OK	окококококок окок	ок ок о		ОК ОКОК ОК ОК
L1_08 OK	ок ок ок ок ок ок ок ок	окок ок ок о		окок ок ок ок ок ок ок
L1_09 OK		ок ок о		ок окок ок
L1_10 OK		ок ок о		ок ок ок
L1_11 OK		ок ок о		ок ок ок
L1_12 OK		ок ок о		ок ок ок
L1_13 OK		ок ок о		ок ок ок ок
L1_14 OK		ок ок о		ок ок окок
L1_15 OK		окок ок о		ок ок ок
L2_00 OK		ок ок о		ок ок ок
L2_01 OK		ок ок о		ок ок ок
L2_02 OK		ок ок о		ок ок ок
L2_03 OK		ок ок о		
L2_04 OK L2_05 OK		ок ок о		
L2_05 OK L2_06 OK		ок ок о		ок ок ок ок
L2_06 OK L2_07 OK		ок ок о ок ок о		
L2_07 OK L2_08 OK				
L2_08 OK				OK
L2_09 OK		ок ок ок о		
L2_10 OK			кок	
L2_11 OK				
L2_12 OK				
L2_13 OK		ок ок о		
L2_14 OK L2_15 OK				
L2_16 OK		ок ок о		ок ок ок ок
L2_10 OK		ок ок о		
L2_17 OK		ок ок о		ок ок ок ок
L2_19 OK			кок	ок ок ок ок
	21:00 21:30 22:00 22:30 23:00 23:30 00:00 00:30	01:00 01:30 02:00 02:30	03:00 03:30 04:00	0 04:30 05:00 05:30 06:00 06:30 07:00 07:30 08:00 08:30

Of course, no auto-recoveries when we are not running \odot

sPHENIX was running a triggered mode test / latency scan.

MVTX – design in sPHENIX to run in streaming mode with 5-10 microsecond strobe. In that case, 100% of "big splash" events will cause an auto-recovery.

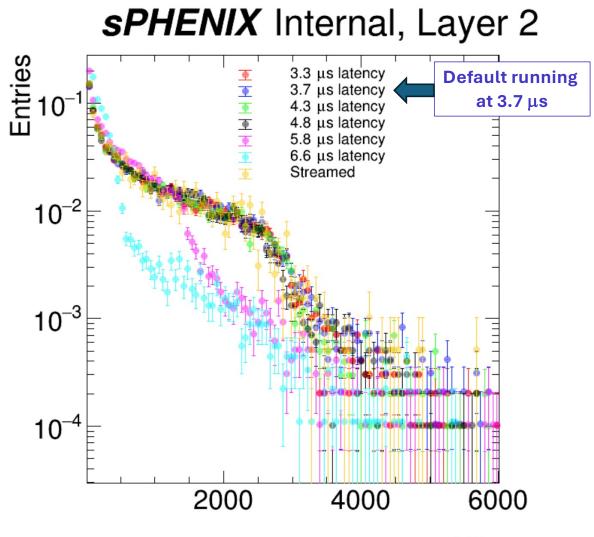

If we can run in triggered mode (which is supported), the auto-recoveries will only be if there is a "big splash" event coincident with a triggered event within 5 microseconds.

Thus, if we run the DAQ rate at 2 kHz, one only sees 2e3 x 5e-6 = 1% of "big splash events", and so auto-recovery rate is expected to be **100x** lower.

The sPHENIX Au+Au plan is for a DAQ rate of 15 kHz, which still should reduce the auto-recovery rate by **13x**.

This effort is completely multiplicative in benefit to any reduction in the "big splash" event rate by C-AD.

<u>What is the challenge of running the MVTX in triggered mode?</u> sPHENIX was designed with 4 microsecond trigger latency spec. The graph below shows that this is late for the ALPIDE chip and will miss hits, And this will be charge-deposit dependent.


Charge deposit depends on particle momentum and species. Note that heavy flavor decays include kaons and protons.

Pixel VPULSE_* Input stage Multi event **Pixel analog Front end** 3x buffer STROBE Reset STATE PIX_IN OUT_A OUT_D Collection **Hit Storage** C_{det}~2.5 fF @ -6 V_{bb} diode C_{in}71.6 fF Latch THR SUB PIX_IN OUT_A ~2 μs peaking time 5-10 µs v V t,~= 10 ns OUT_D $\Delta V = Q/Q$ threshold t,> 100 us **STROBE** Analog front-end and discriminator continuously active **Front End Characteristics** Non-linear and operating in weak inversion. Ultra-low power: 40 nW/pixel (Simulated) The front-end acts as analogue delay line Gain (small signal) [mV/e] 4 Test pulse charge injection circuitry Global threshold for discrimination -> binary pulse OUT_D ENC [e] 3.9 Threshold [e] 92 ± 2 Digital pixel circuitry with three hit storage registers (multi event buffer) Global shutter (STROBE) latches the discriminated hits in next available register In-Pixel masking logic gianluca.aglieri.rinella@cern.ch 27/01/2017

This is a good sign, but again, we need a full analysis with offline tracking (MVTX, INTT, TPC) to understand if efficiency for low momentum kaons and protons is lower...

Also, we request 5 hours of a 12x12 stable store either tonight or tomorrow overnight. Key for TPC checks.

Hits

sPHENIX End-of-Gold Party

Monday, October 21, 2024 noon

Come one, come all... to the sPHENIX parking lot. Food and beverages (and cake) will be served.