JET PERFORMANCE WITH SEPD SECOND ORDER EVENT PLANE ANGLE USED IN THE UE SUBTRACTION (SIMULATION)

Ejiro Umaka (BNL)

Jet Structure Topical group meeting

August 30, 2023

A RE-INTRODUCTION OF THE MATERIAL

Albeit some time ago, this material has been presented several times at the jet TG meeting.

Jet/sEPD related analysis timeline:

- Yr 2020 2021: sPHENIX EPD event plane studies presented at jet TGM. sEPD NSF MRI submitted (2021).
- Yr 2021: sPHENIX jet UE subtraction checks: [1] [2].
 - Conclusions:
 - Pythia jets needs UE subraction as well
 - Auto-correlation (in the calorimeter used for jet measurement and ψ₂ determination leads to event plane dependent JES (see next slide for plot from 2021)).
- Yr 2022: Another look at the UE subtraction using sEPD ψ₂ and the MDC2 samples (right figure)

Presented at jet TG 07/13/22 [link]

MOTIVATION/OUTLINE

- sEPD ψ₂ used in the flow modulated background subtraction shows no significant dependence of the jet yield on the eventplane
- Presentation contents:
 - JES with sEPD ψ₂ as a function of p^{truth}
 - JES with sEPD ψ₂ as a function of eventplane benchmarked against JES with calorimeter ψ₂
- Analysis details:
 - File: CreateFileList.pl -type 11
 -embed DST_CALO_CLUSTER
 DST_GLOBAL
 DST_TRUTH_JET
 DST_TRUTH
 - Truth matched (Truth jet pT > 10 GeV), dR < 0.3, $|\eta|$ < 0.7

Jet yield as a function of the azimuthal distance from the event plane (01/07/2021). One of our first checks on the UE subtraction, which let us conclude the sEPD is required for this study.

JES FITS USING SEPD ψ_2 ($\Delta \phi$ slices)

JES FITS USING SEPD ψ_2 (TRUTH p_T SLICES)

JES FITS USING CALORIMETER ψ_2 ($\Delta\phi$ slices)

JES FITS USING CALORIMETER ψ_2 (TRUTH p_T SLICES)

RESULTS (PLOTS IN QM POSTER)

JES vs Truth p_T JES vs $\Delta \phi$ P_{T,truth}> p_T,reco P_T,truth sPHENIX Simulation sPHENIX Simulation Au+Au √s_{NN} = 200 GeV Au+Au $\sqrt{s_{NN}} = 200 \text{ GeV}$ Anti- $k_t R$ =0.4, $|\eta| < 0.7$ Anti- $k_t R$ =0.4, $|\eta| < 0.7$ cp_T,reco' 0.8 0.9 0.8 0.6 0.7 0.4 0.6 0.5 pp baseline 0.2 flow modulated UE subtraction with calorimeter Ψ flow modulated UE subtraction with calorimeter Ψ. 0.4 ow modulated UE subtraction with sEPD Ψ_2 - flow modulated UE subtraction with sEPD Ψ_2 0.3 n 30 50 -15 -0.50 0.5 1.5 15 20 25 35 40 45 p_{T,truth} [GeV/c] Φ_{true}^{jet} - Ψ_2

AUXILIARY MATERIAL

Figure. From left to right: reco jet p_T , truth jet p_T , reco jet ϕ , reco jet η (w/ 0.7 $|\eta|$ cut), $\Delta \phi = \phi_{true}^{jet} - \Psi_2$ using calorimeter Ψ_2

Figure. From left to right: reco jet p_T , truth jet p_T , reco jet ϕ , reco jet η (w/ 0.7 $|\eta|$ cut), $\Delta \phi = \phi_{true}^{jet} - \Psi_2$ using sEPD Ψ_2