DVP, Jet Structure update, 18 April 2018

Summary of simulation input/output

- Updated set of HepMC Pythia7 QCD dijet events:
 - /sphenix/user/dvp/gen/QCDXX/, XX=7,10,15,25,35
 - → filtered on R=0.4 p_T > 15, 20, 30, 40, 50 GeV jet in $|\eta|$ <0.45
- New HepMC Pythia8 photon+jet events, 10k total:
 - /sphenix/user/dvp/gen/Photon35/
 - ➡ filtered on p_T [×] > 40 GeV, $|\eta^{v}| < 0.85$, and at least one R=0.4 jet with p_T > 20 GeV, $|\eta^{jet}| < 0.45$, all at generator-level
- Output trees in /sphenix/user/dvp/sims/new-jet
 - → <u>YY-QCDXX-10k-v0.root</u> and <u>YY-Photon-10k-v0.root</u>, for YY=pp,AuAu48,AuAu04
 - ➡ all plots shown here can be reproduced <u>exactly</u> from these

Response in QCD dijet events

- Funny behavior in pp traced to minimum seed jet p_T in HI-style jet reco
 - ➡ used to define exclusion regions in 2nd iteration, was set to >15 GeV
 - jets without seed have their energy included in the background estimate, causing over-subtraction ("self-energy bias")

Response fits in pp, R=0.4 jets, first four p_T bins (plots by Jeff Ouellette):

...compare for jets with and without a nearby seed jet

- Not a "bug", rather sensitivity to important parameter in HI-style jet reco
 - \rightarrow too high $p_{T^{seed}}$ causes this self-energy bias at low-jet- p_{T} , as we see here
 - ➡ in, e.g. ATLAS, can be corrected for further at analysis level
 - \rightarrow too low $p_{T^{seed}}$ excludes real background fluctuations from UE determination
 - → proposal: rerun first few QCD slices for p+p, with lower $p_{T^{seed}}$ minimum

Dijet AJ distributions

- Updated dijet A_J distributions to have "full" (10k/QCD slice) statistics
- Now two cone size + p_T selections:

R=0.2, p_{T,1} > 50 GeV: essentially no centralitydependence at reco-level

R=0.4, p_{T,1} > 30 GeV: visible but "small" centrality dependence

Photon+jet x_{Jg} distributions

- Plots of $x_{Jg} = p_T^{jet} / p_T^y$ by Kurt Hill (Colorado), two subtle details:
- 1. use truth photon (assume γ resolution strongly subdominant to that for jet)
- 2. apply multiplicative "calibration" such that $\langle X_{Jg} \rangle^{pp-reco} = \langle X_{Jg} \rangle^{truth}$
 - \Rightarrow e.g. assume we could use in situ photon+jet calibration in p+p
 - \rightarrow otherwise, all reco-level x_{Jg} shifted left from EM-scale response
 - R=0.2: essentially no centralitydependence at reco-level

