Occupancy in the TPC

Hugo Pereira Da Costa

Université Paris-Saclay/LANL Simulation and software meeting, August 11, 2020

Definition and number of 'channels'

Occupancy: average fraction of cells with one hit per event cells = (pad,zbin)

Mean occupancy vs layer - Single HIJING files

G4Hits: /sphenix/sim/sim01/sphnxpro/Micromegas/1/G4Hits_sHijing_0-12fm*.root Clusters: /sphenix/user/hpereira/work/g4simulations/DST/CONDOR Hijing Micromegas/Clusters/*.root

Occupancy vary from 1.5% to 4.2%

Mean occupancy vs layer (cont.) - HIJING + 100kHz pile-up

Clusters: /sphenix/user/hpereira/work/g4simulations/DST/CONDOR_Hijing_Micromegas/G4Hits_merges/*.root Clusters: /sphenix/user/hpereira/work/g4simulations/DST/CONDOR_Hijing_Micromegas/Clusters_merged/*.root

Number of hits/event/layer vary from 39000 to 78000 Occupancy vary from 3.8% to 9.5%

Do the numbers make sense ?

TPC time window: [-13.2, 13.2] μs

At 100kHz this corresponds to 2.64 PU events per trigger event However, only half the time-shifted hits from PU fall into the TPC time window (because for each hits, $t0+v_{drift}$.]z-z_{GEM} must be in [0, 13.2] µs)

So one expects 1+2.64/2 = 2.32 increase in the number of hits from HIJING to HIJING+PU This is consistent with the numbers from previous slides (34000x2.3 = 78200)

PU Hits distribution is the convolution of single HIJING t_{drift} distribution and flat t_0 distribution in [-13.2, 13.2] µs

Centrality dependence

Single HIJING events

Left: layer 22, min occupancy Right: layer 23, max occupancy

Centrality dependence less pronounced when adding PU (expected)

Comparison to Micromegas

up to 16% with little impact from PU

centrality dependence more pronounced than in the TPC, because of little effect from PU

Comparison with HIJING files from Christof

Cluster files at:

/sphenix/user/bogui/MacrosModular/macros/macros/g4simulations/clus only/SvtxCluHijMBPu100 Mar20 1 *

Checks so far

- Mean number of embedded PU per trigger event matches: not a problem on PU rate
- Number of G4Particles in "main" HIJING event (embed_id==0) matches: not a problem of HIJING config. Same thing for number of G4Hits in the TPC
- Number of G4Particles in PU HIJING events (embed_id == -1, -2, ...) don't match For the new files the distribution is the same as for the main HIJING event For Christof files it is significantly larger except for embed_id == -1.

 \rightarrow it seems the "main" Hijing event is identical for both sets of simulations and there is something I dont understand (either in the files or my evaluators) for the PU events, that create the difference in occupancy Need to check how the PU embedding is done

Mean number of embedded PU per trigger event

The mean is slightly larger (and the distribution slightly different) for Christof's file but I think this is because the TPC time window for merging is a bit larger (tbc). Nothing dramatic.

Number of G4Particle and p_{τ} distribution for embed=0

Number of G4Hits and time distribution for embed=0

