Studies of a Central Membrane for the sPHENIX TPC

DNP 2019

Fall Meeting of the Division of Nuclear Physics of the American Physical Society

Sourav Tarafdar (for sPHENIX) Vanderbilt University October 15, 2019

sPHENIX Overview

Upgrade of recently concluded PHENIX experiment at RHIC in Brookhaven National Laboratory

sPHENIX Overview

Upgrade of recently concluded PHENIX experiment at RHIC in Brookhaven National Laboratory

sPHENIX Measurements

Jet measurements

Complementing LHC measurements at high pT and Low pT measurements at RHIC

SPHENIX

sphenix tpc

5

SPHEN

Central Membrane Requirements

- Capability of holding static high-voltage (40 kV) field with a uniformity within 0.1% in R and Z
- Remain flat and parallel within 0.002"
- Provide a means for laser calibration. (allignment of central membrane will be done using laser)

Central Membrane design evolution

- Initial proposal : Thin stretched copper membrane Disadvantages :
- 1. Not stiff
- 2. Not immune to vibrations.
- 3. More number of HV contact to field cage due to the need of extra potential on the outside of membrane stiffener to smooth the E-field .
- 4. High probability of thermally-induced deflections.

Central Membrane design evolution

• Initial proposal : Thin stretched copper membrane Disadvantages :

- 1. Not stiff
- 2. Not immune to vibrations.
- 3. More number of HV contact to field cage due to the need of extra potential on the outside of membrane stiffener to smooth the E-field .
- 4. High probability of thermally-induced deflections.

• New concept : Thick honeycomb membrane with thin FR4 outer layer

Advantages :

SPHEN

- 1. Stiff and very flat.
- 2. Immune to vibrations.
- 3. Only ONE HV contact to other field cages.
- 4. Immune to thermally-induced deflections.

0.005" thick G10 Both Sides 0.125" thick honeycomb DETAIL A

SCALE 4.000

Central Membrane design evolution

- Initial proposal : Thin stretched copper membrane
 Disadvantages :
- 1. Not stiff
- 2. Not immune to vibrations.
- 3. More number of HV contact to field cage due to the need of extra potential on the outside of membrane stiffener to smooth the E-field .
- 4. High probability of thermally-induced deflections.

• New concept : Thick honeycomb membrane with thin FR4 outer layer

Advantages :

- 1. Stiff and very flat.
- 2. Immune to vibrations.
- 3. Only ONE HV contact to other field cages.
- 4. Immune to thermally-induced deflections.

Concerns:

- 1. Mass-in the middle
- 2. Inactive area in the middle along z

SCALE 4.000

Central Membrane design evolution

• Initial proposal : Thin stretched copper membrane Disadvantages :

- 1. Not stiff
- 2. Not immune to vibrations.
- 3. More number of HV contact to field cage due to the need of extra potential on the outside of membrane stiffener to smooth the E-field .
- 4. High probability of thermally-induced deflections.

• New concept : Thick honeycomb membrane with thin FR4 outer layer

Event display with new TPC central membrane

Single particle Geant4 simulation :

• Pions within phase space of 0.1 < pT < 20 GeV, |eta| < 1.0 & |z vertex| < 20

Event display with new TPC central membrane

Upsilon line shape study-

10 Y(1s) per event generated with |zvtx| < 10 cm

Jets study (fragmentation function simulation)-

- Jet fragmentation function = Reconstructed track pT matched to truth jet/ truth jet pT
- Pythia generated files were used for Geant simulation.
- Study was done using two different conditions on truth jet selection
 - 1. Truth jet pT > 50 GeV
 - 2. Truth jet pT > 50 GeV & |eta| < 0.1 (jets mostly passing through the TPC central membrane)

Central Membrane design evolution

- Initial proposal : Thin stretched copper membrane Disadvantages :
- 1. Not stiff
- 2. Not immune to vibrations.
- 3. More number of HV contact to field cage due to the need of extra potential on the outside of membrane stiffener to smooth the E-field .
- 4. High probability of thermally-induced deflections.

New concept : Thick honeycomb membrane with thin FR4 outer laver

Central Membrane design evolution

- Initial proposal : Thin stretched copper membrane **Disadvantages :**
- Not stiff
- 2. Not immune to vibrations.
- 3. More number of HV contact to field cage due to the need of extra potential on the outside of membrane stiffener to smooth the E-field.
- 4. High probability of thermally-induced deflections.

New concept : Thick honeycomb membrane with thin FR4 outer laver

Single electron Geant4 simulation (electron loss due to hard bremsstrahlung radiation) :

• Electrons generated with z vertex = 5 cm, |phi| < pi, pT = 4 GeV, -0.12 < eta < -0.08 (tracks passing through central membrane)

- TPC membrane with Cu layer has wider sigma.
- More loss of electron due to additional hard bremsstrahlung radiation on central membrane with Cu layer.

Upsilons line shape study-

• 30 Y(1s) per event embedded in 100 pions per event generated with |zvtx| < 10 cm, |eta| < 1.0

Conclusions

- The new concept of TPC central membrane doesn't affect sPHENIX Physics program.
- Stiffer.
- Less issues with implementing HV contact.
- Will provide more reliable performance for sPHENIX TPC due to its immunity to vibrations and thermally-induced deflections.

