

Overview of the Diffuse Laser System for the sPHENIX TPC

Ross Corliss

Measuring TPC Distortions

- Central Membrane Stripes: illuminated with diffused UV laser (kHz), produces clusters at known position, integrates over whole distortion column
- Line Lasers: endcap UV laser (*eff <Hz) ionizes along known trajectory, clusters integrate over partial column
- Tracks: (*eff. ~Hz) produces clusters at uncertain position extrapolated from inner tracking, integrates over partial column
- Digital current: infers spacecharge current from electrons at readout (kHz), computes distortions from charge using binned 3D model.

Diffuse Laser Systems

- Using electrons from CM is common in TPCs:
 - STAR: Radial Al stripes on carbon/Kapton CM illuminated by defocused laser = phi and z info
 - ALICE: Fully AI CM surface illuminated by scattered laser light = z info
 - sPHENIX: cm-scale Al pads on ENiG CM illuminated by diffuse laser light = r, phi, z info

August 25, 2020

Membrane Materials

- Want high QE pads, relative to CM surface
- Tested Aluminum pads bonded to ENiG CM vs Al-on-Cu baseline

pad	surface	yield ratio
AI	Cu	175
Al (evap.)	ENiG	240

• Yield better with ENiG (and less sensitive to Cu handling)

Setup at Yale, UV diodes (257 nm, 6 deg. Cone) + MWPCh + PA (FLUKE-189, 10 M'Ω)

August 25, 2020

Diffuse Laser Overview

TPC Laser Review

Membrane Stripe Layout

- Aluminum pads bonded to ENiG CM
- Sara Kurdi (SBU) generated the layout and is developing CM in sPHENIX simulation
- Pad spacing generously larger than expected diffusion
- Radial extent matched to readout pads for optimal charge sharing
- Phi extent ~1mm, but adjustable to provide uniform dQ/dR
- Target photoelectric emission of 100 e-/cm --~2x most probable MIP value (*!!!!)
- Some pads widened in phi to provide unambiguous pattern in reco:

• CM illuminated by laser routed via fiber and diffused internal to the TPC

Determining Nominal Electron Yield

 UV laser @ 266 nm is above work function for Aluminum, so electron yield is proportional to number of photons striking the strip

 $(e_{\gamma} \approx 4.5 \text{ eV}) \& (WF_{Al} \approx 4.0) \Rightarrow (N_e \approx N_{\gamma})$

• MIP yield is ~50e/cm along beam. Charge density projected onto readout plane increased varying with inclination angle.

$$N_{e,\rm Ne}/cm = 43, N_{e,\rm CF_4}/cm = 100$$

 $N_{\rm MIP}/cm = 0.5 \ N_{e,\rm Ne}/cm + 0.5 \ N_{e,\rm CF_4}/cm \approx 72/cm$

• Assuming fixed width, strip e/cm is linearly proportional to photon density.

$$N_{CM}/\mathrm{cm} = \sigma_{\gamma} \Delta Y_{\mathrm{stripe}}$$

- Design for higher charge density to ensure centroid can be accurately determined. Safe because Poisson distribution doesn't have the same highend tail as the MIP distribution
- Additional factor of 2 to account for maximal case of charge sharing between adjacent radial pads at readout

$$2 \times 2 \times N_{\rm MIP} = N_{CM}$$
$$2 \times 2 \times 72 = \sigma_{\gamma} 0.1 \rm{cm}^2$$

 Resulting desired yield is 288 e/cm, hence photon density of 2880γ/cm² at nominal strip width

Laser Source

Onda 266nm: Pulse Energy

Onda 266nm: Average Power

25

30

35

40

45

50

Diffuse Laser Overview

Laser Coupling

- Custom splitter directly couples to laser
- Reflectivity of each mirror selected to send equal intensity to each of 12 fibers.
- Light transmission efficiency ~ 98%
- Possible losses in fibers: bends, twists, scatters

Laser Diffusion

 Cassette holding fiber and diffusers/optics threaded through Wagon Wheel port (Dan Cacace's talk)

- Optics optimized for intensity and uniformity on CM (Nikhil Kumar's talk)
- CM stripe width adjusted to correct nonuniformity

Laser Lifetime

- Vendor tested at 10kHz for extended period
- >1.0W --> 0.92W @1k hours, -->0.77W @ 2k hours (83 days)
- Degradation is in single component (FHG) which can be replaced
- Quoted laser specs build-in this decay

Acquisition of output power at 10 kHz

August 25, 2020

Diffuse Laser Overview

TPC Laser Review

Light Budget

- Custom splitter couples nearly all light into system
- Unavoidable losses in diffusion and strip QE
- Aluminum QE should be measured to confirm.
- Strip widths can be modified to account for moderate additional losses

	Step	Surviving Fraction
	Pulse energy @ 15 kHz	67 uJ
Laser Routing	N photons per pulse	8.9e+13
	beam pickoff	95%
	splitter	98%
	radiation mode losses	95%
	scattering/absorption	95%
	N photons @ cassettes	7.5e+13
Diffuser	absorption	
	scattering	>25%
	geometric losses	
CM	N photons @ CM	>1.8e+13
	Al Quantum Efficiency	>3e-6
	per cm ² CM area	~1/17850
	N photons / cm ²	>3100
	N photons/cm @1mm	>310

Diffuse Laser Overview

Summary

- Diffuse laser system will illuminate TPC central membrane, allowing direct monitoring of space charge distortions on time scales not available in other approaches
- Rack-mounted laser routed via fibers to ports on north and south wagon wheels
- Laser lifetime sufficient for our needs
- Light losses before diffuser stage very likely sufficient for our needs, prototype studies planned.
- Laser light diffusion studied and optimized, uniformity and intensity sufficient for our needs (see Nikhil Kumar's talk)
- Design of fiber/optics holder advanced, no showstoppers (see Dan Cacace's talk)

Alternate Laser Coupling

	Beam pick-off for			
	energy monitor/trigger			
Large core (600um), multi-mode, step index	(~5%)			
(Attopuation ~500dB/	Beam Expander (~98%)			
(Allendalion ~ 500 dB)	(Galilean telescope)			
Light Pipe Homogeniz	zer (~98%),			
uniformity depends or	n LP length	Ц Г		
		Lase		
Coup	ble flat top laser into fiber bundle	Diffuser		
Fiber Bundle		\geq		
 12 fibers +3 spare per TPC half route to individual ports 				
 Homogenizer coupled directly into bundle aperture 				
 Light collecti efficiency if h aperture (0.22) 	on efficiency ~ packing nomogenous and angles < fiber 2)			
_	• ••• • • • • • •			

 $\cdot\,$ Possible losses in fiber bends, twists, scatter

	Step	Surviving Fraction
	Pulse energy @ 15 kHz	67 uJ
	N photons per pulse	8.9e+13
	beam pickoff	95%
Laser	expander	98%
	homogenizer	98%
	bundle coupling	50%
	spare fibers	12/15
lser	radiation mode losses	95%
	scattering/absorption	95%
	N photons @ cassettes	2.9e+13
ĨĨ	absorption	
	scattering	>25%
	geometric losses	
CM	N photons @ CM	>7.3e+12
	Al Quantum Efficiency	>3e-6
	1/ cm ² CM area	~1/17850
	N photons / cm ²	>1200
	N photons/cm @1mm	>100

Diffuse Laser Overview

Membrane Prototype Testing

- AI-ENiG membrane can be tested in the TPC prototype at BNL
- UV laser already on hand for directed laser studies

Electron Yield for 90/10

• UV laser @ 266 nm is above work function for Aluminum, so electron yield is proportional to number of photons striking the strip $(\alpha \sim \sqrt{4.5}, \alpha V) kr(WF \sim \sqrt{4.0}) \rightarrow (W \sim W)$

 $(e_{\gamma} \approx 4.5 \text{ eV})\&(WF_{Al} \approx 4.0) \Rightarrow (N_e \approx N_{\gamma})$

• MIP yield is ~50e/cm along beam. Charge density projected onto readout plane increased varying with inclination angle.

 $N_{\rm MIP}/cm = 0.9 \ N_{e,\rm Ne} + 0.1 \ N_{e,\rm CF_4} \approx 50/cm$

• Assuming fixed width, strip e/cm is linearly proportional to photon density.

$$N_{CM}/\mathrm{cm} = \sigma_{\gamma} \Delta Y_{\mathrm{stripe}}$$

- Design for higher charge density to ensure centroid can be accurately determined. Safe because Poisson distribution doesn't have the same high-end tail as the MIP distribution
- Additional factor of 2 to account for maximal case of charge sharing between adjacent radial pads at readout

$$2 \times 2 \times N_{\rm MIP} = N_{CM}$$
$$2 \times 2 \times 50 = \sigma_{\gamma} 0.1 \rm{cm}^2$$

Resulting target yield is 200 e/cm, hence photon density of 2000γ/cm²