sPHENIX TPC Performance in First Two Runs

Luke Legnosky

Stony Brook University

10/08/2024

The sPHENIX Experiment

<u>Physics Goals → Probe nature of Quark Gluon Plasma</u>

<u>Time Projection Chamber</u>

- 1m drift length on either side; Radius: 20cm < R < 78cm
- $|\eta| < 1.1$ with full azimuthal coverage
- Gas mixture: Ar: $CF_4\colon \mathrm{i}C_4H_{10}\to 75/20/5$ split (Switched from Ar/ $CF_4\to 75/30)$

$\underline{GEM\ Modules}$

Quad stack of Gas Electron Multiplier (GEM) foils

Improved charge sharing \rightarrow Higher spatial resolution

HV Card supplies voltage to each GEM foil

<u>12 modules in ϕ and 3 in radius</u>

Run 23: Installation & Struggles

January: TPC Installed into sPHENIX

Feb: Detector instrumented

May: Beam arrived & TPC turned on

➤ Cooling issues with TPC FEEs caused instability with GEM performance → Damage to modules (linear + nonlinear shorts)

Restricted to limited moments of operation until cooling issues were resolved

Run 23: Remediations

<u>Fix 1: Chiller + Sophisticated Monitoring</u>

- Chiller added to keep FEEs at target temp.
- Grafana page to monitor cooling

Run 23: Performance

Early Run Cosmics

Cosmics Data: After Remediations

- Cosmic data after remediations confirmed TPC functionality under operating conditions
- Months of stable running with cosmics (Aug. 2023 Apr. 2024)

Run 24: Beam Arrival

Unexpected "streakers" in beam background

Large signals from background posed dynamic range issues for detector

Streakers deposit across full drift length of TPC \rightarrow Enormous signals to GEMs and further damage

Tried to improve Dynamic Range of GEMs

Run 24: Further Remediations

Solution: Improve dynamic range through the gas

Gas Mixtures	Ratios
Ar:CH4	60/40
Ar: CH_4 : iC_4H_{10}	75/20/5
Ar: CH_4 : iC_4H_{10}	85/10/5
Ar: CH_4 : iC_4H_{10}	80/15/5
Ar: CH_4 : iC_4H_{10}	90/5/5
Ar:C H_4 : N_2	80/5/15
Ar:C H_4 : N_2	80/10/10
Ar:C H_4 : N_2	75/10/15
Ar:C H_4 : N_2	75/15/10
Ar:C H_4 : N_2	65/25/10
$\operatorname{Ar:}CH_4:N_2$	60/20/20

60+ initial candidates \rightarrow Brought down to 10 \rightarrow New gas decided with bench tests

Gas Mixture	Ratio	Instability (MIPs)
Ar:CF ₄	60:40	$6-20 \mathrm{MIPs}$
Ar: $CF_4:N_2$	65:25:10	$50 \mathrm{MIPs}$
$\operatorname{Ar}: CF_4: iC_4H_{10}$	75:20:5	$460 \mathrm{MIPs}$

Low Diffusion & high instability point \rightarrow Ar: CF_4 : iC_4H_{10} best choice

Run 24: Performance

Placeholder until Jamie sends updated plot!

After Isobutane switch, TPC stability has dramatically improved!

Summary & Future Outlook

- Issues with GEM stability due to cooling and beam background
- Cooling problems resolved with chiller and improved temperature monitoring
- Switch over to Isobutane increased dynamic range of GEMs, allowing for more stable running with large beam backgrounds
- sPHENIX entering the last few weeks of Run 24 \rightarrow switch from p+p to Au+Au
- Collaboration will use these early runs to prepare for further Au+Au running in Run 25

<u>Further Isobutane Results</u>

- The electronics saturated, but we can extrapolate.
- Following the gain curve that gain makes ⁵⁵Fe have 462 MIPS.
- •No sparks at that point.